必修一數(shù)學總結(jié)
總結(jié)是對某一階段的工作、學習或思想中的經(jīng)驗或情況進行分析研究的書面材料,它可以促使我們思考,因此我們要做好歸納,寫好總結(jié)。你想知道總結(jié)怎么寫嗎?下面是小編為大家收集的必修一數(shù)學總結(jié),歡迎閱讀與收藏。
必修一數(shù)學總結(jié)1
函數(shù)的有關(guān)概念
函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈
(1)其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;
(2)與x的值相對應(yīng)的.y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.
函數(shù)的三要素:定義域、值域、對應(yīng)法則
函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域
(2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點等等。
(3)列表法:選取的自變量要有代表性,可以反應(yīng)定義域的特征。
4、函數(shù)圖象知識歸納
(1)定義:在平面直角坐標系中,以函數(shù)y=f(x) , (x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上.
(2)畫法
A、描點法:B、圖象變換法:平移變換;伸縮變換;對稱變換。
(3)函數(shù)圖像變換的特點:
1)函數(shù)y=f(x)關(guān)于X軸對稱y=-f(x)
2)函數(shù)y=f(x)關(guān)于Y軸對稱y=f(-x)
3)函數(shù)y=f(x)關(guān)于原點對稱y=-f(-x)
必修一數(shù)學總結(jié)2
知識點總結(jié)
本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學習函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個知識點,函數(shù)的圖象就迎刃而解了。
一、函數(shù)的單調(diào)性
1、函數(shù)單調(diào)性的定義
2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復(fù)合函數(shù)分析法 (3)導數(shù)證明法 (4)圖象法
二、函數(shù)的奇偶性和周期性
1、函數(shù)的奇偶性和周期性的定義
2、函數(shù)的奇偶性的判定和證明方法
3、函數(shù)的周期性的判定方法
三、函數(shù)的圖象
1、函數(shù)圖象的作法 (1)描點法 (2)圖象變換法
2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。
常見考法
本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學的'每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。
誤區(qū)提醒
1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。
2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點問題。
3、在多個單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號隔開。
4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點對稱,則函數(shù)一定是非奇非偶函數(shù)。
5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數(shù)的圖象。
必修一數(shù)學總結(jié)3
基本初等函數(shù)有哪些
基本初等函數(shù)包括以下幾種:
(1)常數(shù)函數(shù)y = c( c為常數(shù))
(2)冪函數(shù)y = x^a( a為常數(shù))
(3)指數(shù)函數(shù)y = a^x(a>0, a≠1)
(4)對數(shù)函數(shù)y =log(a) x(a>0, a≠1,真數(shù)x>0)
(5)三角函數(shù)以及反三角函數(shù)(如正弦函數(shù):y =sinx反正弦函數(shù):y = arcsin x等)
基本初等函數(shù)性質(zhì)是什么
冪函數(shù)
形如y=x^a的函數(shù),式中a為實常數(shù)。
指數(shù)函數(shù)
形如y=a^x的函數(shù),式中a為不等于1的正常數(shù)。
對數(shù)函數(shù)
指數(shù)函數(shù)的反函數(shù),記作y=loga a x,式中a為不等于1的正常數(shù)。指數(shù)函數(shù)與對數(shù)函數(shù)之間成立關(guān)系式,loga ax=x。
三角函數(shù)
即正弦函數(shù)y=sinx,余弦函數(shù)y=cosx,正切函數(shù)y=tanx,余切函數(shù)y=cotx,正割函數(shù)y=secx,余割函數(shù)y=cscx(見三角學)。
反三角函數(shù)
三角函數(shù)的反函數(shù)——反正弦函數(shù)y = arc sinx,反余弦函數(shù)y=arc cosx (-1≤x≤1,初等函數(shù)0≤y≤π),反正切函數(shù)y=arc tanx,反余切函數(shù)y = arc cotx(-∞ 學習數(shù)學小竅門 建立數(shù)學糾錯本。 把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。 限時訓練。 可以找一組題(比如10道選擇題),爭取限定一個時間完成;也可以找1道大題,限時完成。這主要是創(chuàng)設(shè)一種考試情境,檢驗自己在緊張狀態(tài)下的思維水平。 調(diào)整心態(tài),正確對待考試。 首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。 數(shù)學函數(shù)的值域與最值知識點 1、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下: (1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域. (2)換元法:運用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當根式里一次式時用代數(shù)換元,當根式里是二次式時,用三角換元. (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得. (4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法. (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時需用到平方等技巧. (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式. (7)利用函數(shù)的`單調(diào)性求值域:當能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域. (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域. 2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系 求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異. 如函數(shù)的值域是(0,16],最大值是16,無最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無最大值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2.可見定義域?qū)瘮?shù)的值域或最值的影響. 3、函數(shù)的最值在實際問題中的應(yīng)用 函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤最大”或“面積(體積)最大(最小)”等諸多現(xiàn)實問題上,求解時要特別關(guān)注實際意義對自變量的制約,以便能正確求得最值. 一、集合及其表示 1、集合的含義: “集合”這個詞首先讓我們想到的是上體育課或者開會時老師經(jīng)常喊的“全體集合”。數(shù)學上的“集合”和這個意思是一樣的,只不過一個是動詞一個是名詞而已。 所以集合的含義是:某些指定的對象集在一起就成為一個集合,簡稱集,其中每一個對象叫元素。比如高一二班集合,那么所有高一二班的同學就構(gòu)成了一個集合,每一個同學就稱為這個集合的元素。 2、集合的表示 通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。 有一些特殊的集合需要記憶: 非負整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+ 整數(shù)集Z有理數(shù)集Q實數(shù)集R 集合的表示方法:列舉法與描述法。 、倭信e法:{a,b,c……} 、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1} 、壅Z言描述法:例:{不是直角三角形的三角形} 例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2} 強調(diào):描述法表示集合應(yīng)注意集合的代表元素 A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。 3、集合的三個特性 。1)無序性 指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。 例題:集合A={1,2},B={a,b},若A=B,求a、b的值。 解:,A=B 注意:該題有兩組解。 。2)互異性 指集合中的元素不能重復(fù),A={2,2}只能表示為{2} 。3)確定性 集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的。情況。 集合的含義 集合的中元素的三個特性: 元素的確定性如:世界上的山 元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y} 元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合 3、集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5} 集合的表示方法:列舉法與描述法。 注意:常用數(shù)集及其記法: 非負整數(shù)集(即自然數(shù)集)記作:N 正整數(shù)集NxN+整數(shù)集Z有理數(shù)集Q實數(shù)集R 列舉法:{a,b,c……} 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x(R|x—3>2},{x|x—3>2} 語言描述法:例:{不是直角三角形的三角形} Venn圖: 4、集合的分類: 有限集含有有限個元素的集合 無限集含有無限個元素的集合 空集不含任何元素的集合例:{x|x2=—5} 對數(shù)函數(shù) 對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。 右圖給出對于不同大小a所表示的函數(shù)圖形: 可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。 (1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。 (2)對數(shù)函數(shù)的值域為全部實數(shù)集合。 (3)函數(shù)總是通過(1,0)這點。 。4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。 。5)顯然對數(shù)函數(shù)。 1、函數(shù)零點的定義 。1)對于函數(shù))(xfy,我們把方程0)(xf的實數(shù)根叫做函數(shù))(xfy)的零點。 (2)方程0)(xf有實根函數(shù)(yfx)的圖像與x軸有交點函數(shù)(yfx)有零點。因此判斷一個函數(shù)是否有零點,有幾個零點,就是判斷方程0)(xf是否有實數(shù)根,有幾個實數(shù)根。函數(shù)零點的求法:解方程0)(xf,所得實數(shù)根就是(fx)的零點(3)變號零點與不變號零點 ①若函數(shù)(fx)在零點0x左右兩側(cè)的函數(shù)值異號,則稱該零點為函數(shù)(fx)的變號零點。②若函數(shù)(fx)在零點0x左右兩側(cè)的函數(shù)值同號,則稱該零點為函數(shù)(fx)的不變號零點。 ③若函數(shù)(fx)在區(qū)間,ab上的圖像是一條連續(xù)的曲線,則0 2、函數(shù)零點的判定 (1)零點存在性定理:如果函數(shù))(xfy在區(qū)間],[ba上的圖象是連續(xù)不斷的曲線,并且有(fa)(fb),那么,函數(shù)(xfy)在區(qū)間,ab內(nèi)有零點,即存在,(0bax,使得0)(0xf,這個0x也就是方程0)(xf的根。 (2)函數(shù))(xfy零點個數(shù)(或方程0)(xf實數(shù)根的個數(shù))確定方法 、俅鷶(shù)法:函數(shù))(xfy的零點0)(xf的根;②(幾何法)對于不能用求根公式的方程,可以將它與函數(shù))(xfy的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點。 。3)零點個數(shù)確定 0)(xfy有2個零點0)(xf有兩個不等實根;0)(xfy有1個零點0)(xf有兩個相等實根;0)(xfy無零點0)(xf無實根;對于二次函數(shù)在區(qū)間,ab上的零點個數(shù),要結(jié)合圖像進行確定。 3、二分法 (1)二分法的定義:對于在區(qū)間[,]ab上連續(xù)不斷且(fa)(fb)的函數(shù)(yfx),通過不斷地把函數(shù)(yfx)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點的近似值的方法叫做二分法; 。2)用二分法求方程的近似解的步驟: 、俅_定區(qū)間[,]ab,驗證(fa)(fb)給定精確度e; 、谇髤^(qū)間(,)ab的中點c;③計算(fc); (ⅰ)若(fc),則c就是函數(shù)的零點; 。á)若(fa)(fc),則令bc(此時零點0(,)xac);(ⅲ)若(fc)(fb),則令ac(此時零點0(,)xcb); 、芘袛嗍欠襁_到精確度e,即ab,則得到零點近似值為a(或b);否則重復(fù)②至④步。 集合間的基本關(guān)系 1、子集,A包含于B,記為:,有兩種可能 (1)A是B的一部分, (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。 反之:集合A不包含于集合B,記作。 如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個集合的關(guān)系可以表示為,,B=C。A是C的子集,同時A也是C的真子集。 2、真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA) 3、不含任何元素的.集合叫做空集,記為Φ。Φ是任何集合的子集。 4、有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-2個非空真子集。如A={1,2,3,4,5},則集合A有25=32個子集,25-1=31個真子集,25-2=30個非空真子集。 例:集合共有個子集。(13年高考第4題,簡單) 練習:A={1,2,3},B={1,2,3,4},請問A集合有多少個子集,并寫出子集,B集合有多少個非空真子集,并將其寫出來。 解析: 集合A有3個元素,所以有23=8個子集。分別為:①不含任何元素的子集Φ;②含有1個元素的子集{1}{2}{3};③含有兩個元素的子集{1,2}{1,3}{2,3};④含有三個元素的子集{1,2,3}。 集合B有4個元素,所以有24-2=14個非空真子集。具體的子集自己寫出來。 此處這么羅嗦主要是為了讓同學們注意寫的順序,數(shù)學就是要講究嚴謹性和邏輯性的。一定要養(yǎng)成自己的邏輯習慣。如果就是為了提高計算能力倒不如直接去菜場賣菜算了,絕對能飛速提高的,那學數(shù)學也沒什么必要了。 一、函數(shù)模型及其應(yīng)用 本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等知識點。主要是理解函數(shù)解應(yīng)用題的一般步驟靈活利用函數(shù)解答實際應(yīng)用題。 1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對數(shù)函數(shù)模型、分段函數(shù)模型等。 2、用函數(shù)解應(yīng)用題的基本步驟是: 。1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實際意義); 。2)設(shè)量建模; 。3)求解函數(shù)模型; 。4)簡要回答實際問題。 常見考法: 本節(jié)知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問題,屬于拔高題,難度較大。 誤區(qū)提醒: 1、求解應(yīng)用性問題時,不僅要考慮函數(shù)本身的定義域,還要結(jié)合實際問題理解自變量的取值范圍。 2、求解應(yīng)用性問題時,首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學語言,建立相應(yīng)的數(shù)學模型。 【典型例題】 例1: (1)某種儲蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計算5個月后的本息和(不計復(fù)利)。 。2)按復(fù)利計算利息的一種儲蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2。25%,試計算5期后的本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0。36%·x=100+0。36x,當x=5時,y=101。8,∴5個月后的本息和為101。8元。 例2: 某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元) 。1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式。 。2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬元。(精確到1萬元)。 集合 集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學元素。例如: 1、分散的人或事物聚集到一起;使聚集:緊急~。 2、數(shù)學名詞。一組具有某種共同性質(zhì)的數(shù)學元素:有理數(shù)的~。 3、口號等等。集合在數(shù)學概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學的基本概念,專門研究集合的理論叫做集合論?低(Cantor,G.F.P.,1845年—1918年,德國數(shù)學家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學的所有領(lǐng)域。 集合,在數(shù)學上是一個基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合 集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。 元素與集合的關(guān)系 元素與集合的關(guān)系有“屬于”與“不屬于”兩種。 集合與集合之間的關(guān)系 某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ?占侨魏渭系淖蛹,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性!赫f明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A?B。中學教材課本里將?符號下加了一個≠符號(如右圖),不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集! 集合的幾種運算法則 并集:以屬于A或?qū)儆贐的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以屬于A且屬于B的元差集表示 素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因為A和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那么說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數(shù)的數(shù)有多少個。結(jié)果是3,5,7每項減集合 1再相乘。48個。對稱差集:設(shè)A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N_是正整數(shù)的全體,且N_n={1,2,3,……,n},如果存在一個正整數(shù)n,使得集合A與N_n一一對應(yīng),那么A叫做有限集合。差:以屬于A而不屬于B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬于B}。注:空集包含于任何集合,但不能說“空集屬于任何集合”。補集:是從差集中引出的概念,指屬于全集U不屬于集合A的元素組成的集合稱為集合A的補集,記作CuA,即CuA={x|x∈U,且x不屬于A}空集也被認為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中沒有的3,4就是CuA,是A的補集。CuA={3,4}。在信息技術(shù)當中,常常把CuA寫成~A。 集合元素的性質(zhì) 1.確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如“個子高的同學”“很小的數(shù)”都不能構(gòu)成集合。這個性質(zhì)主要用于判斷一個集合是否能形成集合。 2.獨立性:集合中的元素的個數(shù)、集合本身的個數(shù)必須為自然數(shù)。 3.互異性:集合中任意兩個元素都是不同的對象。如寫成{1,1,2},等同于{1,2};ギ愋允辜现械脑厥菦]有重復(fù),兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。 4.無序性:{a,b,c}{c,b,a}是同一個集合。 5.純粹性:所謂集合的純粹性,用個例子來表示。集合A={x|x 1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表: 解析式 頂點坐標 對稱軸 y=ax^2 (0,0) x=0 y=a(x-h)^2 (h,0) x=h y=a(x-h)^2+k (h,k) x=h y=ax^2+bx+c (-b/2a,[4ac-b^2]/4a) x=-b/2a 當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到, 當h<0時,則向左平行移動|h|個單位得到. 當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象; 當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象; 當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象; 當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象; 因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便. 2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a). 3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小. 4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點: (1)圖象與y軸一定相交,交點坐標為(0,c); (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0 (a≠0)的兩根.這兩點間的距離AB=|x?-x?| 當△=0.圖象與x軸只有一個交點; 當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0. 5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a. 頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值. 6.用待定系數(shù)法求二次函數(shù)的.解析式 (1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應(yīng)值時,可設(shè)解析式為一般形式: y=ax^2+bx+c(a≠0). (2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x-h)^2+k(a≠0). (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0). 7.二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn). 一集合 1、集合的含義:集合為一些確定的、不同的對象的全體。2、集合的中元素的三個特性:確定性、互異性、無序性。3、集合的表示: (1)用大寫字母表示集合:A,B…(2)集合的表示方法: a、列舉法:將集合中的元素一一列舉出來{a,b,c}b、描述法:集合中元素的公共屬性描述出來,寫在大括號內(nèi)表示集合,xRx23c、維恩圖:用一條封閉曲線的內(nèi)部表示. 4、集合的分類: 。1)有限集:含有有限個元素的集合(2)無限集:含有無限個元素的集合(3)空集:不含任何元素的集合5、元素與集合的關(guān)系:aA;aA注意:常用數(shù)集及其記法: 非負整數(shù)集:(即自然數(shù)集)N正整數(shù)集:Nx或N+整數(shù)集:Z有理數(shù)集:Q實數(shù)集:R 6、集合間的基本關(guān)系(1)“包含”關(guān)系子集 定義:如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含 關(guān)系,稱集合A是集合B的子集。記作:AB(或BA) 注意:AB有兩種可能(1)A是B的一部分; (2)A與B是同一集合。 B或BA反之:集合A不包含于集合B,或集合B不包含集合A,記作A(2)“包含”關(guān)系真子集 如果集合AB,但存在元素xB且xA,則集合A是集合B的真子集,記作AB(或BA) 。3“相等”關(guān)系:A=B“元素相同則兩集合相等”,如果AB同時BA那么A=B 規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。(4)集合的性質(zhì) 、偃魏我粋集合是它本身的子集,AA②如果AB,BC,那么AC③如果AB且BC,那么AC 、苡衝個元素的集合,含有2n個子集,2n-1個真子集 7、集合的運算 運算類型交集并集定義由所有屬于A且屬于B由所有屬于集合A或?qū)俚脑厮M成的集合,于集合B的元素所組成叫做A,B的交集.記作的集合,叫做A,B的并AB(讀作‘A交B’)集.記作:AB(讀作‘A并B’)補集全集:一般,若一個集合含有我們所研究問題中的所有元素,我們就稱這個集合為全集,記作:U設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作CSA,韋恩圖示ABABSA圖1圖2CU(CUA)A性質(zhì)A∩A=AA∩Φ=ΦA(chǔ)∩B=BAAUA=AAUΦ=AAUB=BUAAU(CuA)=UA∩(CuA)=Φ.A∩BAA∩AUBABBAUBB二函數(shù)1.函數(shù)的概念:記法y=f(x),x∈A. 2.函數(shù)的三要素:定義域、值域、對應(yīng)法則 3.函數(shù)的表示方法:(1)解析法:(2)圖象法:(3)列表法:4.函數(shù)的基本性質(zhì) a、函數(shù)解析式子的求法 。1)代入法:(2)待定系數(shù)法:(3)換元法:(4)拼湊法: b、定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。(1)分式的分母不等于零; (2)偶次方根的被開方數(shù)大于等于零; (3)對數(shù)式的真數(shù)必須大于零;(4)零次冪式的底數(shù)不等于零;(5)分段函數(shù)的.各段范圍取并集; (6)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合; (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.c、相同函數(shù)的判斷方法;定義域一致②對應(yīng)法則一致 d.區(qū)間的概念: e.值域(先考慮其定義域)5.分段函數(shù)6.映射的概念 對于映射f:A→B來說,則應(yīng)滿足: (1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;(3)不要求集合B中的每一個元素在集合A中都有原象。注意:函數(shù)是特殊的映射。7、函數(shù)的單調(diào)性(局部性質(zhì))(1)增減函數(shù)定義(2)圖象的特點 如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的 。3)函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法(A)定義法:○1取值;○2作差;○3變形;○4定號;○5結(jié)論.(B)圖象法(從圖象上看升降) (C)復(fù)合函數(shù)的單調(diào)性:“同增異減” 注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集. 8、函數(shù)的奇偶性(整體性質(zhì))(1)奇、偶函數(shù)定義 。2)具有奇偶性的函數(shù)的圖象的特征 偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.(3)利用定義判斷函數(shù)奇偶性的步驟: a、首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點對稱;若是不對稱,則是非奇非偶的函數(shù);若對稱,則進行下面判斷;b、確定f(-x)與f(x)的關(guān)系; c、作出相應(yīng)結(jié)論:若f(-x)=f(x),則f(x)是偶函數(shù); 若f(-x)=-f(x),則f(x)是奇函數(shù). 注意:函數(shù)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的前提條件.首先看函數(shù)的定義域是否關(guān)于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).(4)函數(shù)的奇偶性與單調(diào)性 奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性。(5)若已知是奇、偶函數(shù)可以直接用特值9、基本初等函數(shù) 一、一次函數(shù) 二、二次函數(shù):二次函數(shù)的圖象與性質(zhì),注意:二次函數(shù)值域求法三、指數(shù)函數(shù)(一)指數(shù) 1、有理指數(shù)冪的運算法則2、根式的概念3、分數(shù)指數(shù)冪 正數(shù)的分數(shù)指數(shù)冪的 anam(a0,m,nNx,n1),amnmn1amn1nam(a0,m,nNx,n1) 。ǘ┲笖(shù)函數(shù)的性質(zhì)及其特點 1、指數(shù)函數(shù)的概念:一般地,函數(shù)yax(a0,且a1)叫做指數(shù)函數(shù),其中x是自變量, 函數(shù)的定義域為R. 2、指數(shù)函數(shù)的圖象和性質(zhì)a>16540 注意:換底公式 logablogcb(a0,且a1;c0,且c1;b0).logca1nlogab;(2)logabmlogba利用換底公式推導下面的結(jié)論(1)logambn. 。ㄈ⿲(shù)函數(shù) 1、對數(shù)函數(shù)的概念:函數(shù)ylogax(a0,且a1)叫做對數(shù)函數(shù),其中x是自變量, 函數(shù)的定義域是(0,+∞). 2、對數(shù)函數(shù)的性質(zhì):a>10 (一)、映射、函數(shù)、反函數(shù) 1、對應(yīng)、映射、函數(shù)三個概念既有共性又有區(qū)別,映射是一種特殊的對應(yīng),而函數(shù)又是一種特殊的映射。 2、對于函數(shù)的概念,應(yīng)注意如下幾點: (1)掌握構(gòu)成函數(shù)的三要素,會判斷兩個函數(shù)是否為同一函數(shù)。 。2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數(shù)關(guān)系式,特別是會求分段函數(shù)的解析式。 。3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù)、 3、求函數(shù)y=f(x)的反函數(shù)的一般步驟: 。1)確定原函數(shù)的值域,也就是反函數(shù)的定義域; 。2)由y=f(x)的解析式求出x=f—1(y); (3)將x,y對換,得反函數(shù)的習慣表達式y(tǒng)=f—1(x),并注明定義域、 注意: 、賹τ诜侄魏瘮(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起、 、谑煜さ膽(yīng)用,求f—1(x0)的值,合理利用這個結(jié)論,可以避免求反函數(shù)的過程,從而簡化運算、 。ǘ、函數(shù)的解析式與定義域 1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對應(yīng)法則的同時,求出函數(shù)的定義域。求函數(shù)的定義域一般有三種類型: 。1)有時一個函數(shù)來自于一個實際問題,這時自變量x有實際意義,求定義域要結(jié)合實際意義考慮; 。2)已知一個函數(shù)的解析式求其定義域,只要使解析式有意義即可。如: 、俜质降姆帜覆坏脼榱; 、谂即畏礁谋婚_方數(shù)不小于零; 、蹖(shù)函數(shù)的真數(shù)必須大于零; ④指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1; ⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等。 應(yīng)注意,一個函數(shù)的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的`公共部分(即交集)。 。3)已知一個函數(shù)的定義域,求另一個函數(shù)的定義域,主要考慮定義域的深刻含義即可。 已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域。 2、求函數(shù)的解析式一般有四種情況 。1)根據(jù)某實際問題需建立一種函數(shù)關(guān)系時,必須引入合適的變量,根據(jù)數(shù)學的有關(guān)知識尋求函數(shù)的解析式。 。2)有時題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法。比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可。 。3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達式時,可用換元法求函數(shù)f(x)的表達式,這時必須求出g(x)的值域,這相當于求函數(shù)的定義域。 。4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(—x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達式。 (三)、函數(shù)的值域與最值 1、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下: (1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域。 。2)換元法:運用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當根式里一次式時用代數(shù)換元,當根式里是二次式時,用三角換元。 。3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f—1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得。 。4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法。 。5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時需用到平方等技巧。 。6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。 。7)利用函數(shù)的單調(diào)性求值域:當能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域。 。8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域。 2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系 求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲怠R虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異。 如函數(shù)的值域是(0,16],最大值是16,無最小值。再如函數(shù)的值域是(—∞,—2]∪[2,+∞),但此函數(shù)無最大值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2?梢姸x域?qū)瘮?shù)的值域或最值的影響。 3、函數(shù)的最值在實際問題中的應(yīng)用 函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤最大”或“面積(體積)最大(最小)”等諸多現(xiàn)實問題上,求解時要特別關(guān)注實際意義對自變量的制約,以便能正確求得最值。 (四)、函數(shù)的奇偶性 1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù))。 正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點:(1)定義域在數(shù)軸上關(guān)于原點對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恒等式。(奇偶性是函數(shù)定義域上的整體性質(zhì))。 2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時需要將函數(shù)化簡或應(yīng)用定義的等價形式。 第一章集合與函數(shù)概念 一、集合有關(guān)概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素. 2、集合的中元素的三個特性: 1.元素的確定性;2.元素的互異性;3.元素的無序性 說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素. (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素. (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣. (4)集合元素的三個特性使集合本身具有了確定性和整體性. 3、集合的表示: { … }如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} 1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5} 2.集合的表示方法:列舉法與描述法. 注意。撼S脭(shù)集及其記法: 非負整數(shù)集(即自然數(shù)集)記作:N 正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R 關(guān)于“屬于”的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A ,相反,a不屬于集合A記作a?A 列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上. 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法.用確定的條件表示某些對象是否屬于這個集合的方法. 、僬Z言描述法:例:{不是直角三角形的三角形} 、跀(shù)學式子描述法:例:不等式x-3>2的`解集是{x?R| x-3>2}或{x| x-3>2} 4、集合的分類: 1.有限集含有有限個元素的集合 2.無限集含有無限個元素的集合 3.空集不含任何元素的集合例:{x|x2=-5} 高一數(shù)學必修一綜合測試真題 第I卷(選擇題) 1.設(shè)集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},則U(A∩B)= A.{1,4,5}B.{2,3}C.{4,5}D.{1,5} 2.設(shè)集合A={x|x2﹣4x+3≥0},B={x|2x﹣3≤0},則A∪B= A.(﹣∞,1]∪[3,+∞)B.[1,3]C.D. 3.若全集U={1,2,3,4,5},集合M={1,2},N={2,3,4},則(UM)∩N等于 A.{1}B.{2}C.{3,4}D.{5} 4.已知集合A={﹣1,2},B={x∈Z|0≤x≤2},則A∩B等于 A.{0}B.{2}C.φD.φ 5.設(shè)集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,則實數(shù)m的取值范圍為. A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1) 6.已知集合A={1,2,3},B={0,1,2},則A∩B的子集個數(shù)為 A.2B.3C.4D.16 7.如果集合A={x|ax2﹣2x﹣1=0}只有一個元素則a的值是 A.0B.0或1C.﹣1D.0或﹣1 8.已知集合M={x|(x﹣1)=0},那么 A.0∈MB.1MC.﹣1∈MD.0M 9.設(shè)A={x|﹣1≤x<2},B={x|x<a},若A∩B≠,則a的取值范圍是 A.a(chǎn)<2B.a(chǎn)>﹣2C.a(chǎn)>﹣1D.﹣1<a≤2 10.以下五個寫法中:①{0}∈{0,1,2};②{1,2};③{0,1,2}={2,0,1};④0∈;⑤A∩=A,正確的個數(shù)有 A.1個B.2個C.3個D.4個 11.集合{1,2,3}的真子集的個數(shù)為 A.5B.6C.7D.8 12.已知3∈{1,a,a﹣2},則實數(shù)a的值為 A.3B.5C.3或5D.無解 13.已知集合A={﹣1,1},B={x|ax+2=0},若BA,則實數(shù)a的所有可能取值的集合為 A.{﹣2}B.{2}C.{﹣2,2}D.{﹣2,0,2} 14.設(shè)所有被4除余數(shù)為k(k=0,1,2,3)的整數(shù)組成的集合為Ak,即Ak={x|x=4n+k,n∈Z},則下列結(jié)論中錯誤的是A.20xx∈A0B.﹣1∈A3C.a(chǎn)∈Ak,b∈Ak,則a﹣b∈A0D.a(chǎn)+b∈A3,則a∈A1,b∈A2 二、填空題 16.已知集合A={﹣1,3,2m﹣1},集合B={3,m2}.若BA,則實數(shù)m=.17.對于任意集合X與Y,定義:①X﹣Y={x|x∈X且xY},②X△Y=(X﹣Y)∪(Y﹣X),(X△Y稱為X與Y的對稱差).已知A={y|y=2x﹣1,x∈R},B={x|x2﹣9≤0},則A△B=. 18.函數(shù)y=的定義域為A,值域為B,則A∩B=. 19.若集合為{1,a,}={0,a2,a+b}時,則a﹣b=.20.用M[A]表示非空集合A中的元素個數(shù),記|A﹣B|=,若A={1,2,3},B={x||x2﹣2x﹣3|=a},且|A﹣B|=1,則實數(shù)a的取值范圍為. 三、解答題 21.已知不等式x2+mx+3≤0的解集為A=[1,n],集合B={x|x2﹣ax+a≤0}. (1)求m﹣n的值; 。2)若A∪B=A,求a的取值范圍. 22.已知函數(shù)f(x)的定義域為(0,4),函數(shù)g(x)=f(x+1)的定義域為集合A,集合B={x|a<x<2a﹣1},若A∩B=B,求實數(shù)a的取值范圍. 23.已知A={x|x2+x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B=R,求a、b的值.24.已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(UA)∩B={﹣2},求實數(shù)p、q、r的值. 25.已知元素為實數(shù)的集合S滿足下列條件:①0S,1S;②若a∈S,則∈S. 。á瘢┤魗2,﹣2}S,求使元素個數(shù)最少的集合S; (Ⅱ)若非空集合S為有限集,則你對集合S的元素個數(shù)有何猜測?并請證明你的猜測正確. 26.已知集合A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx+m2﹣9≤0},C={y|y=2x+b,x∈R} (1)若A∩B=[0,4],求實數(shù)m的值; 。2)若A∩C=,求實數(shù)b的取值范圍; 。3)若A∪B=B,求實數(shù)m的取值范圍. 試卷答案 1.A 2.D 3.C 4.B 5.B 6.C 7.D 8.D 9.C 10.B 11.C 12.B 13.D 14.D 16.1 17.[﹣3,﹣1)∪(3,+∞) 18.[0,2] 19.﹣1 20.0≤a<4或a>4 21.(1)利用韋達定理,求出m,n,即可求m﹣n的值; 。2)若A∪B=A,BA,分類討論求a的取值范圍. 【解答】解:(1)∵不等式x2+mx+3≤0的解集為A=[1,n], ∴,∴m=﹣4,n=3, ∴m﹣n=﹣7; (2)A∪B=A,∴BA. ①B=,△=a2﹣4a<0,∴0<a<4;②B≠,設(shè)f(x)=x2﹣ax+a,則,∴4≤a≤, 綜上所述,0<a≤. 22.【解答】解:要使g(x)有意義,則:0<x+1<4, ∴﹣1<x<3, ∴A={x|﹣1<x<3}; ∵A∩B=B, ∴BA; ①若B=,滿足BA, 則a≥2a﹣1,解得a≤1; 、谌鬊≠,則, 解得1<a≤2; 綜上,實數(shù)a的取值范圍是(﹣∞,2]. 23.【解答】解:集合A={x|x2+x>0}={x|x<﹣1或x>0}∴﹣1,2是方程x2+ax+b=0的兩個根, ∴a=﹣1,b=﹣2 即a,b的值分別是﹣1,﹣2. 24.【解答】解:集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1}, ∴1+p+1=0,解得p=﹣2; 又1+q+r=0,① 。║A)∩B={﹣2}, ∴4﹣2q+r=0,② 由①②組成方程組解得q=1,r=﹣2; ∴實數(shù)p=﹣2,q=1,r=﹣2. 本題考查了集合的定義與應(yīng)用問題,是基礎(chǔ)題目. 25.【解答】解:(Ⅰ)2∈S,則﹣1∈S,∈S,可得2∈S;﹣2∈S,則∈S,∈S,可得﹣2∈S, ∴{2,﹣2}S,使元素個數(shù)最少的集合S為{2,﹣1,,﹣2,,}. 。á颍┓强沼邢藜疭的元素個數(shù)是3的倍數(shù). 證明如下: 。1)設(shè)a∈S則a≠0,1且a∈S,則∈S,=∈S,=a∈S 假設(shè)a=,則a2﹣a+1=0(a≠1)m無實數(shù)根,故a≠. 同理可證a,,兩兩不同. 即若有a∈S,則必有{a,,}S. (2)若存在b∈S(b≠a),必有{b,,}S.{a,,}∩{b,,}=. 于是{a,,,b,,}S. 上述推理還可繼續(xù),由于S為有限集,故上述推理有限步可中止, ∴S的元素個數(shù)為3的倍數(shù). 26.【解答】解:(1)由A中不等式變形得:(x﹣4)(x+1)≤0, 解得:﹣1≤x≤4,即A=[﹣1,4]; 由B中不等式變形得:(x﹣m+3)(x﹣m﹣3)≤0, 解得:m﹣3≤x≤m+3,即B=[m﹣3,m+3], ∵A∩B=[0,4], ∴, 解得:m=3; (2)∵由C中y=2x+b>b,x∈R,得到C=(b,+∞),且A∩C=,A=[﹣1,4], ∴實數(shù)b的范圍為b≥4; 。3)∵A∪B=B, ∴AB, ∴, 解得:1≤m≤2. 圓錐曲線性質(zhì): 一、圓錐曲線的定義 1.橢圓:到兩個定點的距離之和等于定長(定長大于兩個定點間的距離)的動點的軌跡叫做橢圓. 2.雙曲線:到兩個定點的距離的差的絕對值為定值(定值小于兩個定點的`距離)的動點軌跡叫做雙曲線.即. 3.圓錐曲線的統(tǒng)一定義:到定點的距離與到定直線的距離的比e是常數(shù)的點的軌跡叫做圓錐曲線.當01時為雙曲線. 二、圓錐曲線的方程 1.橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2) 2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2) 3.拋物線:y2=±2px(p>0),x2=±2py(p>0) 三、圓錐曲線的性質(zhì) 1.橢圓:+=1(a>b>0) (1)范圍:|x|≤a|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e=∈(0,1)(5)準線:x=± 2.雙曲線:-=1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e=∈(1,+∞)(5)準線:x=±(6)漸近線:y=±x 3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點:(0,0)(3)焦點:(,0)(4)離心率:e=1(5)準線:x=- 幾何體和體積具有柱、錐、臺、球的結(jié)構(gòu)特征 (1)棱柱: 幾何特征:兩個底面是平行于對應(yīng)邊的全等多邊形;側(cè)面和對角為平行四邊形;側(cè)邊平行相等;平行于底面的截面是與底面相等的多邊形. (2)棱錐 幾何特征:側(cè)面和對角為三角形;平行于底面的截面與底面相似,相似比等于從頂點到截面距離和高比的平方. (3)棱臺: 幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)邊交給原棱錐的頂點 (4)圓柱:定義:以矩形一側(cè)所在的直線為軸旋轉(zhuǎn),其側(cè)旋轉(zhuǎn) 幾何特征:底面為全等圓;母線與軸平行;軸垂直于底圓的半徑;側(cè)展圖為矩形. (5)圓錐:定義:旋轉(zhuǎn)軸以直角三角形的直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周 幾何特征:底面為圓;母線交于圓錐的頂點;側(cè)展圖為扇形. (6)圓臺:定義:旋轉(zhuǎn)軸以垂直直角梯形和底部腰部為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周 幾何特征:上下底面有兩個圓;側(cè)母線交給原圓錐的頂點;側(cè)展圖為弓形. (7)球體:定義:以半圓直徑直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體 幾何特征:球的截面是圓的;球面上任何一點到球心的距離等于半徑. 2.空間幾何三視圖 定義三個視圖:正視圖(光線從幾何前面投影到后面);側(cè)視圖(從左到右) 俯視圖(從上到下) 注:正視圖反映物體的高度和長度;俯視圖反映物體的長度和寬度;側(cè)視圖反映物體的高度和寬度. 3.空間幾何直觀圖-斜二測繪法 斜二測繪法特點:與x軸平行的線段仍與x平行,長度不變; 與y軸平行的線段仍與y平行,長度為原來的一半. 4.柱、錐、臺的表面積和體積 (1)幾何體的表面積是幾何體各個面積的和. (2)特殊幾何體表面積公式(c底部周長,h為高,為斜高,l為母線) (3)柱、錐、臺的體積公式 總結(jié)高中數(shù)學必修二知識點:直線和方程 (1)直線傾斜角 定義:x軸向和直線向上方向之間的角稱為直線傾斜角.特別是當直線與x軸平行或重合時,我們將其傾斜角設(shè)置為0度.因此,傾斜角的值范圍為0°≤α<180° (2)直線斜率 定義:傾斜角不是90°直線,傾斜角的正切稱為直線的斜率.直線斜率常用k表示.即.斜率反映了直線和軸的傾斜程度. 當時,;當時,;當時,. 兩點以上的直線斜率公式: 注意以下四點:(1)當時公式右側(cè)毫無意義,直線斜率不存在,傾斜角90°; (2)k與P1、P2的順序無關(guān);(3)以后求斜率可以通過直線上兩點的坐標直接獲得,而不是傾斜角; (4)直線上兩點的坐標先求斜率可以獲得直線的.傾斜角. (3)直線方程 點斜:直線斜率k,且過點 注:當直線的斜率為0時°時,k=直線方程為y=y1. 當直線的斜率為90時°當直線斜率不存在時,其方程不能用點斜表示.但是l上的每一個橫坐標都等于x所以它的方程是x=x1. 斜截:,直線斜率為k,Y軸上直線的截距為b 兩點式:()直線兩點,截矩式: 直線與軸交點,與軸交點,即與軸和軸的截距. 一般式:(A,B不全為0) 注:各種適用范圍的特殊方程,如: (4)平行于x軸的直線:(b為常數(shù));與y軸平行的直線:(a為常數(shù)); (5)直線系方程:即具有一定共同性質(zhì)的直線 (一)平行直線系 直線系統(tǒng)平行于已知直線(不全為0):(C為常數(shù)) (二)垂直線系 直線系垂直于已知直線(不全為0的常數(shù)):(C為常數(shù)) (3)直線系過定點 ()直線系斜率為k:,直線過定點; ()有兩條直線,交點的直線系方程為 (參數(shù))直線不在直線系中. (6)兩條直線平行垂直 注:利用斜率判斷直線的平行和垂直時,應(yīng)注意斜率的存在. (7)兩條直線的交點 相交 交點坐標是方程組的一組解. 方程組無解;方程組有無數(shù)的解和重疊 (8)兩點間距公式:平面直角坐標系中的兩點 (9)點到直線距離公式:點到直線的距離 (10)兩平行直線距離公式 在任何一條直線上任取一點,然后轉(zhuǎn)化為點到直線的距離求解。 這學期我擔任高一7、8兩個普通班的數(shù)學教學工作。深入研究教法,經(jīng)過一個學期的努力,獲取了很多寶貴的教學經(jīng)驗。以下是我在本學期的教學情況總結(jié): 教學就是教與學,兩者是相互聯(lián)系,不可分割的,有教者就必然有學者。學生是被教的主體。因此,了解和分析學生情況,有針對地教對教學成功與否至關(guān)重要。一方面,從學生基礎(chǔ)來看,學生底子,另一方面,上課比較活躍,上課氣氛非常積極,但中等生、差等生占較大的比例,尖子生相對比較少。因此,講得太深,沒有照顧到整體,我備課時也沒有注意到這點,因此教學效果不是很理想。從此可以看出,了解及分析學生實際情況,實事求是,具體問題具體分析,做到因材施教,對授課效果有直接影響,這根提高數(shù)學高效課堂有很大的關(guān)系。這就是教育學中提到的“備教法的同時要備學生”。這一理論在我的教學實踐中得到了驗證。 教學中,備課是一個必不可少,十分重要的環(huán)節(jié),備學生,又要備教法。備課不充分或備得不好,會嚴重影響課堂氣氛和積極性,曾有一位前輩對我說:“備課備不好,倒不如不上課,否則就是白費心機”。我明白到備課的重要性,因此,每天我都花費大量的時間在備課之上,認認真真鉆研教材和教法,不滿意就不收工。雖然辛苦,但事實證明是值得的。 一堂準備充分的課,會令學生和老師都獲益不淺。如果照本宣科地講授,學生會感到困難和沉悶。為了上好這堂課,我認真研究了教材,找出了重點,難點,準備有針對性地講。為了令教學生動,不沉悶,我還為此準備了大量的比較感興趣的事例和教具,授課時就胸有成竹了。 備課充分,能調(diào)動學生的積極性,上課效果就好。但同時又要有駕馭課堂的能力,因為學生在課堂上的一舉一動都會直接影響課堂教學。因此上課一定要設(shè)法令學生投入,不讓其分心,這就很講究方法了。上課內(nèi)容豐富,現(xiàn)實。教態(tài)自然,講課生動,難易適中照顧全部,就自然能夠吸引住學生。所以,老師每天都要有充足的精神,讓學生感受到一種自然氣氛。這樣,授課就事半功倍。回看自己的授課,我感到有點愧疚,因為有時我并不能很好地做到這點。當學生在課堂上無心向?qū)W,違反紀律時,我的情緒就受到影響,并且把這帶到教學中,讓原本正常的講課受到?jīng)_擊,發(fā)揮不到應(yīng)有的'水平,以致影響教學效果。我以后必須努力克服,研究方法,采取有利方法解決當中困難。 數(shù)學是一門工具學科,對學生而言,既熟悉又困難,在這樣一種大環(huán)境之下,要教好數(shù)學,就要讓學生喜愛數(shù)學,讓他們對數(shù)學產(chǎn)生興趣。否則學生對這門學科產(chǎn)生畏難情緒,不愿學,也無法學下去。為此,我采取了一些方法,就是盡量多講一些笑話和數(shù)學典故,讓他們更了解數(shù)學,更喜歡學習數(shù)學。只有激發(fā)學生學習數(shù)學的樂趣,才能提高同學們的解題能力,對成績優(yōu)秀的同學很有好處。 因為數(shù)學的特殊情況,學生在不斷學習中,會出現(xiàn)好差兩極分化的現(xiàn)象,差生面擴大,會嚴重影響班內(nèi)的學習風氣。因此,絕對不能忽視。為此,我制定了具體的計劃和目標。對這部分同學進行有計劃的輔導。數(shù)學是語言。困此,除了課堂效果之外,還需要讓學生多想,多練。為此,在自修時,我堅持下班了解自修情況,發(fā)現(xiàn)問題及時糾正。課后發(fā)現(xiàn)學生作業(yè)問題也及時解決,及時講清楚,讓學生即時消化。另外,對部分不自覺的同學還采取扎實基礎(chǔ)的方式,先打?qū)嵥麄兊幕A(chǔ),然后想辦法提高他們的能力。 由于經(jīng)驗頗淺,許多地方存在不足,希望在未來的日子里,能在學校領(lǐng)導老師、前輩們的指導下,取得更好成績。 空間中直線與平面、平面與平面之間的位置關(guān)系 1、直線與平面有三種位置關(guān)系: 。1)直線在平面內(nèi)——有無數(shù)個公共點 (2)直線與平面相交——有且只有一個公共點 。3)直線在平面平行——沒有公共點 指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示aαa∩α=Aa∥α 2、直線、平面平行的判定及其性質(zhì) 。1)直線與平面平行的判定 (2)直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。 簡記為:線線平行,則線面平行。 集合的分類 。1)按元素屬性分類,如點集,數(shù)集。 (2)按元素的個數(shù)多少,分為有/無限集 關(guān)于集合的概念: 。1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。 (2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。 。3)無序性:判斷一些對象時候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的'標準。 集合可以根據(jù)它含有的元素的個數(shù)分為兩類: 含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。 非負整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N; 在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N—; 整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z; 有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分數(shù)的統(tǒng)稱,一切有理數(shù)都可以化成分數(shù)的形式。) 實數(shù)全體構(gòu)成的集合,叫做實數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分數(shù)。數(shù)學上,實數(shù)直觀地定義為和數(shù)軸上的點一一對應(yīng)的數(shù)。) 一、集合有關(guān)概念 1. 集合的含義 2. 集合的中元素的三個特性: (1) 元素的確定性,(2) 元素的互異性,(3) 元素的無序性,3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5} (2) 集合的表示方法:列舉法與描述法。 ? 注意:常用數(shù)集及其記法: 非負整數(shù)集(即自然數(shù)集) 記作:N 正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R 1) 列舉法:{a,b,c……} 2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2} 3) 語言描述法:例:{不是直角三角形的三角形} 4) Venn圖: 4、集合的分類: (1) 有限集 含有有限個元素的集合 (2) 無限集 含有無限個元素的集合 (3) 空集 不含任何元素的集合 例:{x|x2=-5} 二、集合間的基本關(guān)系 1.“包含”關(guān)系—子集 注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A 2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5) 實例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等” 即:① 任何一個集合是它本身的子集。A?A 、谡孀蛹:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A) 、廴绻 A?B, B?C ,那么 A?C ④ 如果A?B 同時 B?A 那么A=B 3. 不含任何元素的集合叫做空集,記為Φ 規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 ? 有n個元素的集合,含有2n個子集,2n-1個真子集 三、集合的運算 運算類型 交 集 并 集 補 集 定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}. 由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}). 設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集) 二、函數(shù)的有關(guān)概念 1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域. 注意: 1.定義域:能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域。 求函數(shù)的定義域時列不等式組的主要依據(jù)是: (1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零; (3)對數(shù)式的真數(shù)必須大于零; (4)指數(shù)、對數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合. (6)指數(shù)為零底不可以等于零,(7)實際問題中的函數(shù)的定義域還要保證實際問題有意義. 相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致 (兩點必須同時具備) 2.值域 : 先考慮其定義域 (1)觀察法 (2)配方法 (3)代換法 3. 函數(shù)圖象知識歸納 (1)定義:在平面直角坐標系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上 . (2) 畫法 A、 描點法: B、 圖象變換法 常用變換方法有三種 1) 平移變換 2) 伸縮變換 3) 對稱變換 4.區(qū)間的概念 (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間 (2)無窮區(qū)間 (3)區(qū)間的數(shù)軸表示. 5.映射 一般地,設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A B為從集合A到集合B的一個映射。記作f:A→B 6.分段函數(shù) (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。 (2)各部分的自變量的取值情況. (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集. 補充:復(fù)合函數(shù) 如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復(fù)合函數(shù)。 二.函數(shù)的性質(zhì) 1.函數(shù)的單調(diào)性(局部性質(zhì)) (1)增函數(shù) 設(shè)函數(shù)y=f(x)的定義域為I,如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1 如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的.單調(diào)減區(qū)間. 注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì); (2) 圖象的特點 如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的 (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法 (A) 定義法: ○1 任取x1,x2∈D,且x1 ○2 作差f(x1)-f(x2); ○3 變形(通常是因式分解和配方); ○4 定號(即判斷差f(x1)-f(x2)的正負); ○5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性). (B)圖象法(從圖象上看升降) (C)復(fù)合函數(shù)的單調(diào)性 復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減” 注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集. 8.函數(shù)的奇偶性(整體性質(zhì)) (1)偶函數(shù) 一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù). (2).奇函數(shù) 一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù). (3)具有奇偶性的函數(shù)的圖象的特征 偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱. 利用定義判斷函數(shù)奇偶性的步驟: ○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點對稱; ○2確定f(-x)與f(x)的關(guān)系; ○3作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù). (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定 . 9、函數(shù)的解析表達式 (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關(guān)系時,一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域. (2)求函數(shù)的解析式的主要方法有: 1) 湊配法 2) 待定系數(shù)法 3) 換元法 4) 消參法 10.函數(shù)最大(小)值(定義見課本p36頁) ○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值 ○2 利用圖象求函數(shù)的最大(小)值 ○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值: 如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b); 如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b); 二次函數(shù) I.定義與定義表達式 一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.) 則稱y為x的二次函數(shù)。 二次函數(shù)表達式的右邊通常為二次三項式。 II.二次函數(shù)的三種表達式 一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0) 頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)] 交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線] 注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系: h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a III.二次函數(shù)的圖像 在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。 IV.拋物線的`性質(zhì) 1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。 特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0) 2.拋物線有一個頂點P,坐標為 P(-b/2a,(4ac-b^2)/4a) 當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。 3.二次項系數(shù)a決定拋物線的開口方向和大小。 當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。 |a|越大,則拋物線的開口越小。 1.函數(shù)知識:基本初等函數(shù)性質(zhì)的考查,以導數(shù)知識為背景的函數(shù)問題;以向量知識為背景的函數(shù)問題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。 2.向量知識:向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運算律;考查平面向量的坐標運算;考查平面向量與幾何、三角、代數(shù)等學科的綜合性問題。 3.不等式知識:突出工具性,淡化獨立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來,考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識為背景,在知識網(wǎng)絡(luò)的交匯處命題,綜合性強,能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起?疾閷W生的等價轉(zhuǎn)化能力和分類討論能力;以當前經(jīng)濟、社會生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點,主要考查學生閱讀理解能力以及分析問題、解決問題的能力。 4.立體幾何知識:2016年已經(jīng)變得簡單,2017年難度依然不大,基本的三視圖的`考查難點不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計算等問題,都是重點考查內(nèi)容。 5.解析幾何知識:小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標下的解析幾何知識,解答題主要考查直線和圓的知識,直線與圓錐曲線的知識,涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點,定值,范圍的考查,考試的難度降低。 6.導數(shù)知識:導數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強,能力要求高;往往與公式、導數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點整體偏低。 7.開放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點,理科13,文科14題。 【必修一數(shù)學總結(jié)】相關(guān)文章: 數(shù)學必修三知識點總結(jié)11-24 必修5數(shù)學知識點總結(jié)12-06 必修一化學知識點總結(jié)12-15 必修生物一知識點總結(jié)11-25 生物必修一知識點總結(jié)07-20 高一歷史必修一知識點總結(jié)07-19 必修一必修二生物知識點03-01必修一數(shù)學總結(jié)4
必修一數(shù)學總結(jié)5
必修一數(shù)學總結(jié)6
必修一數(shù)學總結(jié)7
必修一數(shù)學總結(jié)8
必修一數(shù)學總結(jié)9
必修一數(shù)學總結(jié)10
必修一數(shù)學總結(jié)11
必修一數(shù)學總結(jié)12
必修一數(shù)學總結(jié)13
必修一數(shù)學總結(jié)14
必修一數(shù)學總結(jié)15