97超级碰碰碰久久久_精品成年人在线观看_精品国内女人视频免费观_福利一区二区久久

《小數(shù)的混合運算》教學設計

時間:2024-11-08 22:21:51 設計 我要投稿

《小數(shù)的四則混合運算》教學設計

  在教學工作者開展教學活動前,總歸要編寫教學設計,教學設計是一個系統(tǒng)化規(guī)劃教學系統(tǒng)的過程。那么應當如何寫教學設計呢?下面是小編精心整理的《小數(shù)的四則混合運算》教學設計,希望對大家有所幫助。

《小數(shù)的四則混合運算》教學設計

《小數(shù)的四則混合運算》教學設計1

  教材說明

  學生在前幾冊教材中已經(jīng)學習過了有關速度、時間、路程之間數(shù)量關系的應用題。但是以前學習的這種應用題,都是研究一個物體的運動情況,從這部分教材開始,將要研究兩個物體(兩人、兩車、兩船等)的運動情況。這里以相遇問題為主,研究兩個物體在運動中的速度、時間和路程之間的數(shù)量關系。兩個物體運動的情況是多種多樣的,有方向問題,出發(fā)地點問題,還有時間問題。學生要全部掌握這些是較困難的。本冊教材的重點是教學兩個物體相向運動的應用題。其中又以“相遇求路程”和“相遇求時間”兩種為主。關于兩物體相遇,求其中一個物體的運動速度的應用題,放在后面,用列方程的方法解答。

  學好兩物體相向運動的相遇問題,關鍵是弄清每經(jīng)過一個單位時間,兩物體之間的距離變化。由于學生在這方面的生活經(jīng)驗較少,往往不易理解相向運動的變化特點。為此教材首先出現(xiàn)一個準備題,通過圖示來說明什么叫做“相向而行”。接著通過列表分析了每經(jīng)過1分、2分、3分后,兩個人之間距離的變化,讓學生理解什么是“相遇”。然后再通過例3、例4教學“相遇求路程”和“相遇求時間”的應用題。

  在例3中,教材通過圖示著重說明了小強和小麗兩人走的路程的和就是他們兩家之間的路程。但是解答方法可以不同。第一種解法是先求兩人各自走多少米,再加起來。這種解法思路較清楚,學生容易理解。第二種解法稍難一些,但是有了準備題做基礎,學生就能比較好理解為什么要先求每分鐘兩人所走的路程的和。這種解法不僅比第一種解法簡便,而且是教學例4的基礎。

  在例4中,教學“相遇求時間”的應用題。這恰好是利用例3中的數(shù)量關系進行逆運算。教材沒有再詳細地進行分析,只是提出啟發(fā)性問題,讓學生想應該怎樣解答。

  在練習十四中,除了編排了相向運動的相遇問題以外,還有一些稍有變化的題目。例如:相背行駛、不同時出發(fā)、間接給出某一車的速度等,為的是擴展學生的經(jīng)驗,讓學生更多地熟悉有關兩個物體運動變化時的數(shù)量關系,同時也防止學生在解題時死套類型或公式。

  教學建議

  1.這部分內(nèi)容可以用3課時進行教學。完成練習十四中的習題。

  2.教學例3之前,可以先復習速度、時間和路程之間的數(shù)量關系。然后說明,以前我們都是研究一個物體運動的速度、時間和路程的關系。現(xiàn)在我們要研究兩個物體運動的速度、時間和路程的關系。接著,出示第54頁上面的準備題,通過畫圖或者讓兩個學生演示,相對走一走,說明什么叫做“同時出發(fā)”和“相向而行”。再結合圖示或?qū)W生的.演示,看每分兩人距離的變化,讓學生在圖下面的表中填寫數(shù)目。學生填完表以后,教師可以組織學生分析表中各個數(shù)量之間的關系,弄清兩人在相對行走的過程中,經(jīng)過1分、2分、3分后,每個人走過的米數(shù)和兩人之間的距離有什么關系。最后再弄清什么叫做“相遇”,相遇時,兩個人走過的路程和兩家之間的距離有什么關系。

  3.通過例3教學相向運動求路程的應用題時,可以畫出線段圖來幫助學生弄清題意,使學生看到小強和小麗在相遇時兩人走過的路程的和,就是他們兩家之間的距離。然后,可以提問:“怎樣才能求出兩人走過的路程的和呢?”可以先讓學生試著列式計算,然后組織討論。使學生明確,先分別求出兩人各自走過的路程,也就是各自從家到學校的路程,再加起來就是兩家之間的路程。教學完第一種解法后,可以讓學生聯(lián)系準備題中分析過的數(shù)量關系想一想,在這題中由于兩人同時出發(fā),那么每經(jīng)過1分鐘兩人之間的路程有什么變化,到相遇時怎樣?求兩家之間的路程還可以怎樣算?引導學生列出第二種算式計算。做完后可以讓學生說一說自己是怎樣分析和解答的。在這之后,還可以讓學生比較一下兩種解法,想一想它們之間有什么聯(lián)系。從數(shù)量關系上看,第一種解法是用兩人各自的速度乘時間,得出兩人各自走的路程,然后再加起來;第二種解法是根據(jù)兩人同時出發(fā)后相遇,時間相同,可以先算出兩人每分鐘一共走多少米,也就是“速度和”,再乘時間。從數(shù)學知識上看,兩種解法的算式之間的聯(lián)系正好符合乘法分配律。然后,通過例3下面“做一做”中的習題和練習十四中第1~3題,使學生鞏固所學的知識。

  4.通過例4教學相向運動求相遇時間的應用題。教學時,可以先讓學生自己解答復習題。復習前面剛學過的兩人相遇求路程的應用題。然后再把條件和問題改成例4,并畫圖表示出條件和問題,然后引導學生想,已知兩地相距270米,又知道兩人各自的速度,能不能求出相遇的時間?并且聯(lián)系例3的第二種解法,啟發(fā)學生想,“每經(jīng)過1分鐘兩人之間的路程有什么變化?”“到相遇時兩人共走了多少米?”“那么經(jīng)過多少分鐘兩人可以走完這270米,可以怎樣計算?”讓學生試著列式解答。然后找?guī)讉學生說一說自己是怎樣分析解答的。在學生做完例4下面“做一做”中的習題以后,訂正時也要找?guī)讉學生分析一下自己的解法。

《小數(shù)的四則混合運算》教學設計2

  教學目標:

  (一)掌握整數(shù)、小數(shù)四則混合運算的運算順序,會使用中括號,能夠比較熟練地計算整數(shù)、小數(shù)四則混合運算式題。

  (二)通過對整數(shù)、小數(shù)四則混合運算的運算順序的總結、歸納,提高學生的抽象概括能力。

  (三)培養(yǎng)學生養(yǎng)成良好的學習習慣,提高學生的計算能力。

  教學重點:

  掌握整數(shù)、小數(shù)四則混合運算的運算順序。

  教學難點:

  提高學生計算正確率以及約等號的.正確使用。

  教學過程:

  一、復習準備

  1.口算

  12+0.12= 7.2-0.2= 3.5÷0.35=

  2.95+0.05= 5-0.6= 2.8÷0.14=

  8÷12.5= 1.2+2.8-3.99= 4×1.72=

  3.74+6.26= 4.5×6= 0.25×4÷0.2=

  2÷4= 20×0.2= 20.75-9.5=

  3.5×8×0.125=

  2.提問

  (1)我們學過哪幾種運算?

  (2)我們把加法、減法、乘法、除法統(tǒng)稱為什么運算?(加法、減法、乘法、除法統(tǒng)稱為四則運算。)

  (3)整數(shù)四則混合運算的順序是什么?

  二、學習新課

  1.學習例1:3.7-2.5+4.6= 3.6×6÷0.9=

  (1)思考:以上兩題中分別含有什么運算?運算順序怎樣?

  (2)學生試算后訂正。

  3.7-2.5+4.6

  =1.2+4.6

  =5.8

  3.6×6+0.9

  =21.6÷0.9

  =24

  (3)小結運算順序

 、俳處熤v解:加法和減法叫做第一級運算,乘法、除法叫做第二級運算。

 、谝陨蟽深}中分別含有幾級運算?運算順序怎樣?(①題中只含有第一級運算,按從左往右依次計算;②題中只含有第二級運算,也按從左往右依次計算。)

 、壅l能用簡明的語言概括以上兩題的運算順序?(一個算式里,如果只含有同一級運算,要從左往右依次計算。)

  2.學習例2:35.6-5×1.73= 6.75+2.52÷1.2=

  (1)觀察以上兩題中含有幾級運算?應先做哪步運算,后做哪步運算?

  (2)學生計算后訂正。

  (3)小結。

  以上兩題都是含有兩級運算的算式,應先做哪級運算,后做哪級運算?

  討論得出:一個算式里,如果含有兩級運算,要先做第二級運算,后做第一級運算。

  (4)練習:先說出運算順序,再算出得數(shù)。

  ①P37“做一做”;②3.6÷1.2+0.5×5。

  思考:①上題如果要先算1.2+0.5應怎么辦?(加小括號。)

 、谌绻人(1.2+0.5)×5應怎么辦?(加中括號。)

  教師介紹:小括號“( )”是公元17世紀由荷蘭人吉拉特首先使用。中括號“[ ]”是公元17世紀首次出現(xiàn)在英國的互里士的著作中。

  小括號和中括號的作用是什么呢?(改變算式中的運算順序。)

  3.試做例3:3.6÷(1.2+0.5)×5= 3.69÷[(1.2+0.5)×5]=

  (1)兩題運算順序是怎樣的?(一個算式里,如果有括號,要先算小括號里面的,再算中括號里面的。)

  (2)學生試做

  3.6÷(1.2+0.5)×5

  =3.6÷1.7×5

  3.6÷[(1.2+0.5)×5]

  =3.6÷[1.7×5]

  =3.6÷8.5

  計算中出現(xiàn)3.6÷1.7和3.6÷8.5除不盡時,教師講解

  在四則混合運算過程中,遇到除法的商的小數(shù)位數(shù)較多或出現(xiàn)循環(huán)小數(shù)時,一般保留兩位小數(shù),再進行計算。

  要想保留兩位小數(shù),只需除到第幾位?(一般只需除到第三位小數(shù),用“四舍五入法”保留兩位小數(shù)。)

  學生繼續(xù)計算后,訂正

  3.6÷(1.2+0.5)×5

  =3.6÷1.7×5

  ≈2.12×5

  =10.6

  3.6÷[(1.2+0.5)×5]

  =3.6÷[1.7×5]

  =3.6÷8.5

  ≈0.42

  提問:為什么①題中第二步要用約等于號“≈”,而第三步卻要用等號“=”。(因為在第二步計算時,3.6÷1.7除不盡,在第二步計算時,要取它的商的近似值2.12,所以在第二步要用“≈”連接;而第三步用2.12乘以5,得到的積10.6是準確的結果,應該用等號連接。)

  4.小結

  (1)什么情況用等于號?什么時候用約等于號?(當除不盡或者商的小數(shù)位數(shù)較多時,用“四舍五入法”保留兩位小數(shù),在保留兩位小數(shù)取近似值的這一步,要寫約等于號;當取準確值時,用等號。)

  (2)要改變算式的運算順序,可以怎么辦?(可以使用小括號、中括號。)

  (3)有括號的算式,運算順序怎樣?(一個算式里,如果有括號,要先算小括號里面的,再算中括號里面的。)

  三、鞏固反饋

  1.P38:做一做。

  2.P40:1①②,2①②。

  (1)說出運算順序;

  (2)計算并且驗算;

  (3)訂正并小結驗算方法。

  驗算方法:①原式驗算;②互逆驗算;③交換驗算。

  3.判斷下面各題,哪些是對的,哪些是錯的,并說明原因。

  (1)0.8-0.8×0.7=0( );

  (2)1.6+1.4×2=6( );

  (3)50-3.9+6.1=40( );

  (4)20÷2.5×4=32( );

  (5)9.6+0.4-9.6+0.4=0( );

  (6)4.8×2÷4.8×2=1( )。

  4.P40:4。先計算填空,再列出綜合算式。

  5.課后作業(yè):P40:1③④,2③④,3。

《小數(shù)的四則混合運算》教學設計3

  教學內(nèi)容:

  課本第39頁例1、例2.

  教學目標:

  1、使學生理解第一級運算和第二級運算的含義。

  2、使學生掌握無括號的四則混合運算順序,并能正確地進行計算。

  3、能在學生掌握整數(shù)四則混合運算和小數(shù)四則混合運算的基礎上,對整數(shù)、小數(shù)四則混合運算進行概括、總結。

  4、培養(yǎng)學生認真嚴格的態(tài)度。

  教學過程:

  一、復習鋪墊

  (1)設問:我們學過哪些計算?(學生回答后,告訴學生:加法、減法、乘法和除法這四種運算,統(tǒng)稱為四則運算。)

  (2)填空回答。

 、僭谝粋算式里,如果只有()或者只有(),要從左往右依次計算。

  ②在一個算式里,如果有(),又有(),要先做()后做()。

  (3)在一個算式里,如果有括號,要先算()。

  二、新授

  1、出示課題:整數(shù)、小數(shù)四則混合運算。

  2、介紹四則運算:我們學過的加、減、乘、除四種運算,統(tǒng)稱四則運算。

  3、教學例1.

  (1)板書例1:3.7-2.5+4.6 3.6×6÷0.9

  然后設問

 、龠@些算式里有哪些運算?

  在學生回答的基礎上告訴學生:加法和減法叫做第一級運算,乘法和除法叫做第二級運算。

 、谶@兩個算式的運算順序怎樣?

  ③如果用“第一級運算”代替“加、減法”,用“第二級運算”代替“乘、除法”,運算順序怎樣敘述。

  根據(jù)學生回答,改變復習填空①的敘述。

  ④再概括一點講,這句話可以怎樣敘述?

  根據(jù)學生回答,改變復習填空①的敘述,出示教材結語。

  (2)學生完成例1的`計算。

  4、教學例2.

  (1)板書例2:35.6-5×1.73,6.75+2.52÷1.2,然后設問

 、偎闶嚼锖袔准夁\算?

 、谶\算順序怎樣?

  根據(jù)學生回答,改變復習填空②的敘述,出示教材結語。

  (2)學生把沒有做完的繼續(xù)做完。(一學生板演,其余做在書上。)

  (3)完成例2下面的“做一做”習題。

  5、小結:混合運算步驟比較多,容易發(fā)生錯誤,我們要養(yǎng)良好的習慣,計算時要做到:“一看、二想、三劃、四算、五查”。在沒有括號算式中,先算乘除,后算加減。

  三、鞏固練習。

  1、(1)填空。(出示,學生口答)

 、偌、減、乘、除四則運算統(tǒng)稱為()。

  ②加法和減法叫做第()級運算,乘法和除法叫做第()級運算。

  ③一個算式里,如果只含有同一級運算要從()計算;如果含有兩級運算,要先做第()級運算,后做第()級運算;如果有兩種括號,要先算()括號里面的,再算()括號里面的。

  2、課本第39頁做一做。

  四、作業(yè)。

  練習十第1、4題。

【《小數(shù)的混合運算》教學設計】相關文章:

整數(shù)、小數(shù)混合運算教學設計04-14

《混合運算》教學設計11-18

混合運算教學設計06-05

加減混合運算教學設計10-01

【通用】混合運算教學設計04-03

分數(shù)混合運算教學設計01-29

小學數(shù)學《混合運算》教學設計04-05

《混合運算》教學設計(精選10篇)01-30

混合運算教學設計15篇06-05