(精品)抽屜原理教學設計
在教學工作者實際的教學活動中,總不可避免地需要編寫教學設計,編寫教學設計有利于我們科學、合理地支配課堂時間。教學設計要怎么寫呢?下面是小編收集整理的抽屜原理教學設計,歡迎大家分享。
抽屜原理教學設計1
教學目標:
1.知識與能力:初步了解抽屜原理,運用抽屜原理知識解決簡單的實際問題。
2.過程和方法:經(jīng)歷抽屜原理的探究過程,通過動手操作、分析、推理等活動,發(fā)現(xiàn)、歸納、總結原理。
3.情感與價值:通過“抽屜原理”的靈活應用感受數(shù)學的魅力;提高同學們解決問題的能力和興趣。
教學重點:
經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
教學難點:
理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學過程:
一、創(chuàng)設情景
導入新課
師:同學們喜歡玩游戲嗎?講臺前面有6張凳子,請7位同學來搶凳子坐。我不看同學們怎樣坐,我敢肯定的說:這6張凳子中總有一張凳子至少有兩個同學同坐,大家相信嗎?(師生演示)
師:想知道老師為什么能做出如此準確的判斷嗎?這其中蘊含一個有趣的數(shù)學原理——抽屜原理。(板書課題)這節(jié)課我們就一起來研究這個數(shù)學原理。
師:通過今天的學習,你想知道些什么?
二、自主操作
探究新知
(一)活動一課件出示:把4枝鉛筆放到3個筆筒里,可以怎么放?師:你們擺擺看,會有什么發(fā)現(xiàn)?把你們發(fā)現(xiàn)的結果用自己喜歡的方式記錄下來。
1、學生動手操作,師巡視,了解情況。
2、匯報交流說理活動
、賻煟河惺裁窗l(fā)現(xiàn)?誰能說說看?
師根據(jù)學生的回答用數(shù)字在黑板上記錄。板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1)師:你們是這樣記錄的嗎?
師:還可以用圖記錄。我把用圖記錄的用課件展示出來。師:還可以用表格記錄。師板書在黑板上。 ②再認真觀察記錄,還有什么發(fā)現(xiàn)?
板書:不管怎樣放,總有一個筆筒里至少有2枝鉛筆。
、墼鯓訑[可以一次得出結論?(啟發(fā)學生用平均分的擺法,引出用除法計算。)板書:4÷3=1(枝)1(枝)
、軒煟哼@種方法是不是很快就能確定總有一個筆筒里至少有幾枝鉛筆呢?(學生交流)
、莅5枝鉛筆放進4個筆筒里呢?還用擺嗎?板書:5÷4=1(枝)1(枝)
、拚n件出示:把6枝鉛筆放進5個筆筒呢?把7枝鉛筆放進6個筆筒呢?把10枝鉛筆放進9個筆筒呢?把100枝鉛筆放進99個筆筒呢?板書:7÷6=1(枝)1(枝)10÷9=1(枝)1(枝)100÷99=1(枝)1(枝)
、哂^察這些算式你發(fā)現(xiàn)了什么規(guī)律?預設學生說出:至少數(shù)=商+余數(shù)
師:是不是這個規(guī)律呢?我們來試一試吧!
3、深化探究得出結論
課件出示:5只鴿子飛回3個鴿籠,至少有兩只鴿子要飛進同一個鴿籠里,為什么?
、賹W生活動
、诮涣髡f理活動
預設:生1:題目的說法是錯誤的,用商加余數(shù),應該至少有3只鴿子要飛進同一個鴿籠。
生2:不同意!不是“商加余數(shù)”是“商加1”。
③師:到底是“商加余數(shù)”還是“商加1”?誰的結論對呢?在小組里進行研究、討論。
、軒煟赫l能說清楚?板書:5÷3=1(只)2(只)至少數(shù)=商+1
。ǘ┗顒佣
課件出示:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
1、分組操作后匯報
板書:5÷2=2(本)1(本)7÷2=2(本)1(本)9÷2=2(本)1(本)
2、那么探究到現(xiàn)在,大家認為怎樣才能確定總有一個抽屜至少有幾本書?生:至少數(shù)=商+1
3、師:我同意大家的討論。我們這個發(fā)現(xiàn)就是有趣的“抽屜原理
”,(點題)!俺閷显怼庇址Q“鴿籠原理”,最先是由19世紀德國數(shù)學家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實際問題中有著廣泛的應用。用它可以解決許多有趣的。問題,讓我們來試試好嗎?
三、靈活應用
解決問題
1、解釋課前提出的游戲問題。
2、課件出示:8只鴿子飛回3個鴿舍,不管怎樣分,總有一個鴿舍至少有幾只鴿子?
3、課件出示:任意13人中,至少有兩人的出生月份相同。為什么?
4、課件出示:任意367名學生中,一定存在兩名學生,他們在同一天過生日。為什么?
四、暢談感受
教學結束
同學們,今天這節(jié)課有什么感受?(抽生談談,師總結。)在這堂課中,我首先設計(搶凳子游戲,講臺前面有6張凳子,請7位同學來搶凳子坐。我不看同學們怎樣坐,我敢肯定的說:這6張凳子中同學們不管怎樣坐,總有一張凳子至少有兩個同學同坐,大家相信嗎?)目的一:小孩子最喜歡玩游戲,一說玩游戲,調動了學生學習的`積極性;目的二:激發(fā)學生思考什么是抽屜原理,對解決這類問題有什么作用?
接著出示:把4枝鉛筆放到3個筆筒里,可以怎么放?我讓學生用自已喜歡的方法動手操作、匯報、板書,得出結論,又提出:怎樣擺可以一次得出結論?小組討論,然后針對他們的方法進行講解(邊操作邊講解),其實這方法是用平均分的擺法,引出用除法計算。)板書:4÷3=1(枝)1(枝)得出預設學生說出:至少數(shù)=商+余數(shù),讓學生有更深的認識,同時也讓他們了解平均分的擺法最好,為后面的學習打下鋪墊。
然后,出示活動二:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?先動手操作,同時用算式計算,看算式的規(guī)律是:發(fā)現(xiàn)是至少數(shù)=商+1接著我反問任意367名學生中,一定存在兩名學生,他們在同一天過生日。為什么?這樣有利于學生的反向思維能力的鍛煉。
抽屜原理教學設計2
一、教學內(nèi)容:
教材第70頁、72頁例一、例二及做一做。
二、教學目標:
知識與技能
1.理解最簡單的“抽屜原理”及“抽屜原理”的一般形式。
2.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
過程與方法
通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。情感態(tài)度與價值觀
體會數(shù)學知識在日常生活中的廣泛應用,培養(yǎng)學生的探究意識和能力。
三、教學重點:
理解抽屜原理的推導過程。教學難點;理解抽屜原理的一般規(guī)律。
四、教學方法:
教法:創(chuàng)設情境 引導探究 學法:小組合作
討論
五、師生課前準備:
4支鉛筆
3個文具盒 投影儀
五、教學過程
(一)課前游戲引入
1.坐凳子游戲:
教師和5名學生做游戲
2.用一副牌展示“抽屜原理”。
師:這有一副牌,老師用它變一個魔術。想看嗎?這個魔術的名字叫“猜花色”。老師隨意抽五張牌。我能猜到,至少有兩位同學的手中的花色是相同的,你們信嗎?(老師與學生合作完成魔術)師:通過者個游戲你們能猜到我們今天研究的.內(nèi)容嗎?
3.揭示課題,板書課題《抽屜原理》
抽屜原理很神奇,我們用它可以解決很多有趣的的問題,想弄明白這個原理嗎?這節(jié)課我們就一起來探究這種神秘的原理。
(二)探究原理
建立模型
1.合作探究(問題一)
師:同學們手中都有文具盒和鉛筆,現(xiàn)在分小組動手操作:學生取出4枝筆,3個文具盒。然后把4枝筆放入3個文具盒中,擺一擺,想一想共有有幾種放法?還有什么發(fā)現(xiàn)?
學生取出學具,帶著問題展開小組活動。
2.匯報展示
學習小組派代表到臺前展示成果。要求學生邊擺邊說,老師同時在黑板上板書草圖。可能會出現(xiàn)以下幾種放法:
放法:(0,1,3)(2,2,0)(2,1,1)(4,0,0)教師:通過剛才的操作,你發(fā)現(xiàn)了什么?
學生:我們發(fā)現(xiàn)不管怎么放,總是有一個文具盒里至少放進去了2枝筆。理由是
2教師引導學生用平均分的方法解決問題
小組帶著問題再次展開探究。
生:每個文具盒先放1枝,余下的一枝不管放到哪個文具盒里都可以得出,總有一個文具盒至少放進2枝筆。
3.學以致用
課件出示:
將5枝筆放入4個文具盒 將50枝筆放入49個文具盒 將1000枝筆放入999個文具盒
教師:同學們仔細觀察文具盒數(shù)和所對應的鉛筆數(shù)你發(fā)現(xiàn)了什么? 組織學生相互儀一儀,得出結論。
小小收獲:只要放進的鉛筆數(shù)比文具盒數(shù)多1,總有一個文具盒里至少放進2枝鉛筆。
師:看來同學們都用用平均分的方法就可以解決這個問題呢? 師:如果要放的鉛筆數(shù)比文具盒數(shù)多2,多3,多4呢?
4.嘗試練習
有7只鴿子,要飛進5個鴿舍里,總有一個鴿舍里至少飛進2個鴿子,為什么?
三、合作探究(問題二)
課件出示:如果將5本書放入2個抽屜,那么不管怎么放,肯定有一
個文具盒至少放進了xx枝筆?
組織學生分組討論,相互交流。師:能否用算式解答呢? 生列式計算5÷2=21 2+1=3 生:至少放3枝,商+1。
1、如果一共有7本書會怎樣呢?
2、如果一共有9本書會怎樣呢? 學生獨立完成,然后匯報
3、二次嘗試練習:
如果把5本書放進3個抽屜,不管怎么放總有一個抽屜至少有幾本書?
四、課堂總結
通過學習你有什么收獲?
五、課堂檢測
1. 14本書放入5個抽屜,總有一個抽屜至少有幾本書?(10分)2. 26本書放入7個抽屜,總有一個抽屜至少有幾本書?(10分)3. 六(2)班有學生39人,我們可以肯定,在這39人中,至少有
幾人的生日在同一個月?想一想,為什么?(10分)
六、板書設計
(0,1,3)(2,2,0)(2,1,1)(4,0,0)只要放進的鉛筆數(shù)比文具盒數(shù)多1,總有一個文具盒里至少放進2枝鉛筆。
5÷2=2……1 2+1=3 7÷2=3……1 3+1=4
抽屜原理教學設計3
教學內(nèi)容:
教科書第68、69頁例1、2。
教學目標:
1、使學生經(jīng)歷將一些實際問題抽象為代數(shù)問題的過程,并能運用所學知識解決有關實際問題。
2、能與他人交流思維過程和結果,并學會有條理地、清晰地闡述自己的'觀點。
教學重點:分配方法。
教學難點:分配方法。
教學方法:列舉法、分析法
學習方法:嘗試法、自主探究法
教學用具:課件
教學過程:
一、定向導學(3分)
。ㄒ唬┯螒蛞
師:同學們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準備了3把椅子,請4個同學上來,誰愿來?
1、游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。
2、討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?
游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。
引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。
。ǘ┙沂灸繕
理解并掌握解決鴿巢問題的解答方法。
二、自主學習(8分)
1、看書68頁,閱讀例1:把4枝鉛筆放進3個文具盒中,可以怎么放?有幾種情況?
。1)理解“總有”和“至少”的意思。
。2)理解4種放法。
2、全班同學交流思維的過程和結果。
3、跟蹤練習。
68頁做一做:5只鴿子飛回3個鴿舍,至少有2只鴿子要飛進同一個鴿舍里。為什么?
(1)說出想法。
如果每個鴿舍只飛進1只鴿子,最多飛回3只鴿子,剩下2只鴿子還要飛進其中的一個鴿舍或分別飛進其中的兩個鴿舍。所以至少有2只鴿子飛進同一個鴿舍。
。2)嘗試分析有幾種情況。
(3)說一說你有什么體會。
抽屜原理教學設計4
(一)小結
鴿巢問題的解答方法是什么?
物體的數(shù)量大于抽屜的數(shù)量,總有一個抽屜里至少放進(商+1)個物體。
。ǘz測
1、填空
。 1)7只鴿子飛進5個鴿舍,至少有( )只鴿子要飛進同伴的鴿舍里。
。 2)有9本書,要放進2個抽屜里,必須有一個抽屜至少要放( )本書。
。3)四年級兩個班共有73名學生,這兩個班的學生至少有( )人是同一月出生的。 4、任意給出3個不同的自然數(shù),其中一定有2個數(shù)的和是( )數(shù)。
2、選擇
。1)5個人逛商店共花了301元錢,每人花的錢數(shù)都是整數(shù),其中至少有一人花的錢數(shù)不低于( )元。 a、60 b、61 c、62 d、59
。2)3種商品的.總價是13元,每種商品的價格都是整數(shù),至少有一種商品的價格不低于( )元。 a、3 b、4 c、5 d、無法確定
3、幼兒園老師準備把15本圖畫書分給14個小朋友,結果是什么?
六、作業(yè) (6分)
完成課本練習十二第2、4題。
板書
抽屜原理
物體的數(shù)量大于抽屜的數(shù)量,總有一個抽屜至少放進(商+1)物體。
抽屜原理教學設計5
1、出示:盒子里有同樣大小的紅球和藍球各4個。要想摸出的球一定有2個同色的,最少要摸出幾個球?
。1)組織學生讀題,理解題意。
教師:你們能猜出結果嗎?
組織學生猜一猜,并相互交流。
指名學生匯報。
學生匯報時可能會答出:只摸4個球就可以了,至少要摸出5個球……
教師:能驗證嗎?
教師拿出準備好的紅球及藍球,組織學生到講臺前來動手摸一摸,驗證匯報結果的正確性。
(2)教師:剛才我們通過驗證的方法得出了結論,聯(lián)系前面所學的知識,這是一個什么問題?
2、組織學生議一議,并相互交流。再指名學生匯報。
教師:上面的問題是一個抽屜問題,請同學們找一找:“抽屜”是什么?“抽屜”有幾個?
組織學生議一議,并相互交流。
指名學生匯報,使學生明確:抽屜就是顏色數(shù)。(板書)
教師:能用例1的知識來解答嗎?
組織學生議一議,并相互交流。
指名學生匯報。
使學生明確:只要分的物體比抽屜多,就能保證總有一個抽屜至少放蕩2個球,因此要保證摸出兩個同色的球,摸出球的數(shù)量至少要比顏色的種數(shù)多一。
。3)組織學生對例題的解答過程議一議,相互交流,理解解決問題的方法。
學生不難發(fā)現(xiàn):只要摸出的球比它們的顏色種數(shù)多1,就能保證有兩個球同色。
3、做一做
第1題。
1、獨立思考,判斷正誤。
2、同學交流,說明理由。其中“370名學生中一定有兩人的生日是同一天”與例1中的“抽屜原理”是一類,“49名學生中一定有5人的出生月份相同”則與例2的類型相同。教師要引導學生把“生日問題”轉化成“抽屜問題”。因為一年中最多有366天,如果把這366天看作366個抽屜,把370個學生放進366個抽屜,人數(shù)大于抽屜數(shù),因此總有一個抽屜里至少有兩個人,即他們的生日是同一天。而一年中有12個月,如果把這12個月看作12個抽屜,把49個學生放進12個抽屜,49÷12=4……1,因此,總有一個抽屜里至少有5(即4+1)個人,也就是他們的.生日在同一個月。
三、鞏固練習
完成課文練習十二第1、3題。
四、總結評價
1、師:這節(jié)課你有哪些收獲或感想?
五、布置作業(yè)
1.做一做。把紅、黃、藍三種顏色的小棒各10根混在一起。如果讓你閉上眼睛,每次最少拿出幾根才能保證一定有2根同色的小棒?保證有2對同色的小棒呢?
2.試一試。給下面每個格子涂上紅色或藍色。觀察每一列,你有什么發(fā)現(xiàn)?如果只涂兩列的話,結論有什么變化呢?
3、拓展練習(選做)
。1)任意給出5個非0的自然數(shù)。有人說一定能找到3個數(shù),讓這3個數(shù)的和是3的倍數(shù)。你信不信?
(2)把1~8這8個數(shù)任意圍成一個圓圈。在這個圈上,一定有3個相鄰的數(shù)之和大于13。你知道其中的奧秘嗎?
抽屜原理教學設計6
導學內(nèi)容:P70——71例1、例2,完成做一做及練習十二1、2題
導學目標
1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2、通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
導學重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
導學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
預習學案
同學們玩過撲克牌嗎?撲克牌有幾種花色?取出兩張王牌,在剩下的52張撲克牌中任意取出5張,我不看牌,我敢肯定的說:這5張牌至少有兩張是同花色,大家相信嗎?
導學案
通過今天的學習,你想知道些什么?
自主操作探究新知
(一)活動1
課件出示:
把3本書進2個抽屜中,有幾種方法?請同學們放一放,再把你的'想法在小組內(nèi)交流。
1、學生動手操作,師巡視,了解情況。
2、匯報交流說理活動
你們有什么發(fā)現(xiàn)?誰能說說看?
根據(jù)學生的回答用數(shù)字在黑板上記錄。板書:(3,0)(2,1)(1,2,)(0,3)
還可以用什么方法記錄?我把用圖記錄的用課件展示出來。
①再認真觀察記錄,還有什么發(fā)現(xiàn)?
(總有一個抽屜里至少有2本書。)
②怎樣放可以一次得出結論?(啟發(fā)學生用平均分的放法,引出用除法計算。)板書:3÷2=1(本)……1(本)
、圻@種方法是不是很快就能確定總有一個抽屜里至少有幾本書呢?(學生交流)
④把4本書放進3個抽屜里呢?還用擺嗎?板書:4÷3=1(本)……1(本)
、菡n件出示:把6本書放進5個抽屜呢?
把7本書放進6個抽屜呢?
把10本書放進9個抽屜呢?
把100本書放進99個抽屜呢?
板書:7÷6=1(本)……1(本)
10÷9=1(本)……1(本)
100÷99=1(本)……1(本)
、抻^察這些算式你發(fā)現(xiàn)了什么規(guī)律?
預設學生說出:至少數(shù)=商+余數(shù)
師:是不是這個規(guī)律呢?我們來試一試吧!
3、深化探究得出結論
課件出示:7只鴿子飛回5個鴿籠,至少有兩只鴿子要飛進同一個鴿籠里,為什么?
①學生活動
、诮涣髡f理活動
、鄣降资恰吧碳佑鄶(shù)”還是“商加1”?誰的結論對呢?在小組里進行研究、討論。
、苷l能說清楚?板書:5÷3=1(只)……2(只)至少數(shù)=商+1
(二)活動二
課件出示:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
分組操作后匯報
板書:5÷2=2(本)……1(本)
7÷2=3(本)……1(本)
9÷2=4(本)……1(本)
那么探究到現(xiàn)在,大家認為怎樣才能確定總有一個抽屜至少有幾本書?
(至少數(shù)=商+1)
我同意大家的討論。我們這個發(fā)現(xiàn)就是有趣的“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀德國數(shù)學家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實際問題中有著廣泛的應用。用它可以解決許多有趣的問題,讓我們來試試好嗎?
靈活應用解決問題
1、解釋課前提出的游戲問題。
2、8只鴿子飛回3個鴿舍,不管怎樣分,總有一個鴿舍至少有幾只鴿子?
3、任意13人中,至少有兩人的出生月份相同。為什么?
4、任意367名學生中,一定存在兩名學生,他們在同一天過生日。為什么?
暢談感受:同學們,今天這節(jié)課有什么感受?
課堂檢測
一、填空
1、7只鴿子飛進5個鴿舍,至少有( )只鴿子要飛進同伴的鴿舍里。
2、有9本書,要放進2個抽屜里,必須有一個抽屜至少要放( )本書。
3、四年級兩個班共有73名學生,這兩個班的學生至少有( )人是同一月出生的。
4、任意給出3個不同的自然數(shù),其中一定有2個數(shù)的和是( )數(shù)。
二、選擇
1、5個人逛商店共花了301元錢,每人花的錢數(shù)都是整數(shù),其中至少有一人花的錢數(shù)不低于( )元。
A、60 B、61 C、62 D、59
2、3種商品的總價是13元,每種商品的價格都是整數(shù),至少有一種商品的價格不低于( )元。
A、3 B、4 C、5 D、無法確定
三、解決問題
1、現(xiàn)有5把鎖的各1把鑰匙混在一起跟鎖對不上號了,請問最少試幾次就可能全部對上號?
2、六、一班四組有男女同學各5名,把他們的名字分別用10個數(shù)字代替,至少要點幾個數(shù)字,才能保證叫到兩名男生或兩名女生?
課后拓展
1、六、二班有學生35人,李老師至少要準備多少本練習本,才能保證有一個人的練習本在兩本或兩本以上?
2、從1、2、3……100,這100個連續(xù)自然數(shù)中,任意取出51個不相同的數(shù),其中必有兩個數(shù)互質,這是為什么呢?
板書設計
抽屜原理
5÷2=2……1至少有3只
7÷2=3……1至少有4只
9÷2=4……1至少有5只
11÷2=5……1至少有6只
至少數(shù)=商數(shù)+1
抽屜原理教學設計7
教學內(nèi)容:
《抽屜原理》是義務教育課程標準實驗教科書數(shù)學六年級下冊第五單元數(shù)學廣角的教學內(nèi)容。這部分教材通過幾個直觀例子,借助實際操作,向學生介紹“抽屜原理”,使學生在理解“抽屜原理”這一數(shù)學方法的基礎上,對一些簡單的實際問題加以“模型化”,會用“抽屜原理”加以解決!俺閷显怼痹谏钪羞\用廣泛,學生在生活中常常能遇到實例,但并不能有意識地從數(shù)學的角度來理解和運用“抽屜原理”。教學中應有意識地讓學生理解“抽屜原理”的“一般化模型”。
學情分析:
六年級學生的邏輯思維能力、小組合作能力和動手操作能力都有了較大的提高,加上已有的生活經(jīng)驗,很容易感受到用“抽屜原理”解決問題帶來的樂趣。激趣是新課導入的。抓手,喜歡和好奇心比什么都重要,游戲,讓學生置身游戲中開始學習,為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學習把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W生感興趣又易于理解的內(nèi)容。特別是對教材中的結論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建模”,使復雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標要求。
教學目標:
1、使學生初步了解抽屜原理,運用抽屜原理知識解決簡單的實際問題。
2、使學生經(jīng)歷抽屜原理的探究過程,通過動手操作、分析、推理等活動,發(fā)現(xiàn)、歸納、總結原理。
3、使學生通過“抽屜原理”的靈活應用感受數(shù)學的魅力;提高解決問題的能力和興趣。
教學重點:
經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
教學難點:
理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學過程:
一、課前游戲,導入新課。
游戲請5名同學到前面來,老師這有4張凳子,老師喊123開始,要求每位同學都必須坐在凳子上,引導:5位同學坐在4張椅子上,不管怎么坐,總有一把凳子上至少坐兩個同學。
我們剛才做了個小游戲,但小游戲蘊含著一個有趣的數(shù)學原理。今天我們就來研究這個有趣的數(shù)學原理——抽屜原理。
二、通過操作,探究新知
。ㄒ唬┗顒右
1、出示題目:把4根小棒,放在3個杯子里,怎么放?有幾種不同的放法?
。ò鍟盒“4杯子3)
提出要求:把所有的擺法都擺出來,看看你會有什么發(fā)現(xiàn)?
。1)同桌之間互相合作,動手擺,把各種情況記錄下來。
。2)指名一位同學展示不同擺法,教師板書。(4,0,0)(3,1,0)(2,2,0)(2,1,1),(3)引導學生觀察發(fā)現(xiàn):不管怎么放,總有一個杯子里至少有2根小棒。(板書:總有一個杯子里至少有)
。4)師生共同理解“總有”“至少”有2枝什么意思?
。5)明確:剛才同學們把所有擺法一一列舉出來,得到了這樣的.結論,我們稱之為“枚舉法”。
2、要把6根小棒放進5杯子里,你感覺會有什么結果呢?
。1)啟發(fā)學生猜想結果
把6根小棒放入五個杯子里,你感覺一下,不要動手擺,你感覺一下會有什么樣的結論?
(2)引導學生選擇合適的方法
提出要求:想一個快速而又簡單的方法,只擺一種情況,你就可以得到這個結論?
(3)學生嘗試操作驗證。
。4)全班交流,操作演示。
學生活動后組織交流:先每個杯子擺一根,每個杯子放1跟,5個杯子,就已經(jīng)放了5根,還有1根不管怎么放,總有一個杯子至少有兩根小棒
預設:如遇到每個杯子擺兩根,有的杯子空的,這樣有說服力嗎?有的杯子還空著,要先把每個杯子都裝上小棒才行。
。5)明確結論:把6根小棒放進5個杯子里,不管怎么放,總有一個杯子里至少有2枝小棒。
3、課件出示:
把100根小棒放進99個杯子呢?
談話:要不要也準備100根小棒和99根杯子呢?可以怎么辦?
引導用假設法進行思考:假設每個杯子放1跟,99個杯子,就已經(jīng)放了99根,還有1根不管怎么放,總有一個杯子至少有2根小棒。
這也是數(shù)學中一種很重要的方法“假設法”。
引導學生觀察小棒數(shù)和杯子數(shù),你有什么發(fā)現(xiàn)?
明確:這里的小棒數(shù)都比杯子數(shù)多1,當小棒數(shù)比杯子數(shù)多1時,總有一個杯子至少放了兩根小棒。
。ǘ┗顒佣
談話:接下來,我們把數(shù)學書當做物體數(shù)放入抽屜里,看看又有什么發(fā)現(xiàn)?
課件出示:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
板書:書抽屜總有一個抽屜放入算式
5235÷2=2……1
抽屜原理教學設計8
教學目標:
1.知識與能力目標:
經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。通過猜測、驗證、觀察、分析等數(shù)學活動,建立數(shù)學模型,發(fā)現(xiàn)規(guī)律。滲透“建模”思想。
2.過程與方法目標:
經(jīng)歷從具體到抽象的探究過程,提高學生有根據(jù)、有條理地進行思考和推理的能力。
3.情感、態(tài)度與價值觀目標:
通過“抽屜原理”的靈活應用,提高學生解決數(shù)學問題的能力和興趣,感受到數(shù)學文化及數(shù)學的魅力。
教學重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
教學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學準備:教具:5個杯子,6根小棒;學具:每組5個杯子,6根小棒。
教學過程:
一、游戲激趣,初步體驗。
師:同學們,你們玩過撲克牌嗎?下面我們用撲克牌來玩?zhèn)游戲。大家知道一副撲克牌有54張,如果去掉兩張王牌,就剩52張,對嗎?如果從這52張撲克牌中任意抽取5張,我敢肯定地說:“張5張撲克牌至少有2張是同一種花色的,你們信嗎?那就請5位同學上來各抽一張,我們來驗證一下。如果再請五位同學來抽,我還敢這樣肯定地說,你們相信嗎?其實這里面蘊藏著一個非常有趣的數(shù)學原理,想不想研究?
二、操作探究,發(fā)現(xiàn)規(guī)律。
。ㄒ唬┙(jīng)歷“抽屜原理”的探究過程,理解原理。
1.研究小棒數(shù)比杯子數(shù)多1的情況。
師:今天這節(jié)課我們就用小棒和杯子來研究。
師:如果把3根小棒放在2個杯子里,該怎樣放?有幾種放法?
學生分組操作,并把操作的結果記錄下來。
請一個小組匯報操作過程,教師在黑板上記錄。
師:觀察這所有的擺法,你們發(fā)現(xiàn)總有一個杯子里至少有幾根小棒?板書:總有一個杯子里至少有。
師:依此推想下去,4根小棒放在3個杯子里,又可以怎樣放?大家再來擺擺看,看看又有什么發(fā)現(xiàn)?
學生分組操作,并把操作的結果記錄下來。
請一個小組代表匯報操作過程,教師在黑板上記錄。
師:觀察所有的擺法,你發(fā)現(xiàn)了什么?這里的“總有”是什么意思?“至少”又是什么意思?
師:那如果把6根小棒放在5個杯子里,猜一猜,會有什么樣的結果?
師:怎樣驗證猜測的結果對不對,你又什么好方法?引導學生不再一一列舉,用平均分的方法來找答案。并用算式表示分的結果:6÷5=1……1
師:那如果用這種方法,你知道把7根小棒放在6個杯子里,把10根小棒放在9個杯子里,把100根小棒放在99個杯子里,會有什么樣的.結果呢?你又從中發(fā)現(xiàn)了什么規(guī)律呢?
師:我們發(fā)現(xiàn)了小棒的數(shù)量比杯子的數(shù)量多1,總有一個杯子里至少有2根小棒。那如果小棒的數(shù)量比杯子的數(shù)量多2、多3,又會有什么樣的結果呢?
2、研究小棒數(shù)比杯子數(shù)多2、多3的情況。
師:如果把5根小棒放在3個杯子里,會有什么結果?
引導:先平均分,每個杯子里分得1根小棒,余下的2根小棒又該怎么分呢?
師:把7根小棒放在3個杯子里,會有什么結果呢?為什么?
3、研究小棒數(shù)比杯子數(shù)的2倍多、3倍多…等情況。
師:如果把9根小棒放在4個杯子里,把15根小棒放在4個杯子里,分別又會有什么結果?
小組內(nèi)討論,再請同學說結果和理由。
4、總結規(guī)律。
師:我們將小棒看做物體、把杯子看做抽屜,你發(fā)現(xiàn)了什么規(guī)律?
總結:把m個物體放在n個抽屜里(m﹥n),總有一個抽屜至少有“商+1”個物體。
5、介紹抽屜原理。
“抽屜原理”又稱“鴿巢原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,這一原理在解決實際問題中有著廣泛的應用!俺閷显怼钡膽檬乔ё?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。
三、應用“抽屜原理”,感受數(shù)學的魅力。
1、把5本書放進2個抽屜中,不管怎么放,總有一個抽屜至少放進幾本書?為什么?
先思考:這里是把什么看做物體?什么看做抽屜?再說結果和理由。
2、8只鴿子飛回3個鴿舍,至少有3只鴿子要飛進同一個鴿舍里。為什么?
3、向東小學六年級共有370名學生,其中六(2)班有49名學生。請問下面兩人說的對嗎?為什么?
。1)六年級里至少有兩人的生日是同一天。
。2)六(2)班中至少有5人是同一個月出生的。
4、張叔叔參加飛鏢比賽,投了5鏢,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?
5、師:開課時我們做的游戲還記得嗎?為什么老師可以肯定地說:從52張牌中任意抽取5張牌,至少會有2張牌是同一花色的?你能用所學的抽屜原理來解釋嗎?
四、全課小結。
說一說:今天這節(jié)課,我們又學習了什么新知識?(師生共同對本節(jié)課的內(nèi)容進行小結)
五、布置作業(yè)。
課本73頁練習十二第2、4題。
六、板書設計。
數(shù)學廣角——抽屜原理
抽屜原理教學設計9
教學內(nèi)容:人教版六年級下冊第五單元數(shù)學廣角
教學目標:
1、初步了解“抽屜原理”。
2、引導學生用操作枚舉或假設的方法探究“抽屜原理”的一般規(guī)律。
3、會用抽屜原理解決簡單的實際問題。
4、經(jīng)歷從具體的抽象的探究過程,初步了解抽屜原理,提高學生又根據(jù)有條理的進行思考和推理的能力,體會比較的學習方法。
教學重點:抽屜原理的理解和簡單應用。
教學難點:找出實際問題與抽屜原理的內(nèi)在聯(lián)系。
教學過程:
一、開展小游戲,引入新課。
師:在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?
師:聽清要求,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。
師:開始。
師:都坐下了嗎?
生:坐下了。
師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩位同學”我說得對嗎?
生:對!
師:想知道老師為什么會做出如此準確的判斷嗎?其實這里面蘊含著一個有趣的數(shù)學原理——抽屜原理。
二、實驗探索
第一步:研究4枝鉛筆放進3個文具盒,有哪些不同的放法?你們又能從這些方法中發(fā)現(xiàn)什么有趣的.現(xiàn)象?
1、(出示)師:把4枝筆放進3個文具盒,有哪些不同的放法?(請一生示范)你們又能從這些放法中發(fā)現(xiàn)什么有趣的現(xiàn)象?
2、師:接下來,就請同學們以小組為單位進行實驗操作,并把放法和發(fā)現(xiàn)填在記錄卡上。
放法
文具盒1
文具盒2
文具盒3
最多放幾枝
A
B
C
D
我們的發(fā)現(xiàn)
3、小組匯報交流。
。4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)
生:不管怎么放,總有1個文具盒里至少有2枝鉛筆。
師:“總有”是什么意思?
生:一定有。
師:“至少”是什么意思?
生:不少于2枝,可能是3枝或4枝。
生小結:把4枝鉛筆放進3個文具盒,總有一個文具盒至少放進2枝鉛筆。(最多有2枝或2枝以上)
4、師:把4枝筆飯放進3個文具盒里,不管怎么放,總有一個文具盒里至少有2枝鉛筆。這是我們通過實際操作發(fā)現(xiàn)了這個結論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結論,找出至少數(shù)呢?
生:我們發(fā)現(xiàn)如果每個文具盒里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個文具盒里,總有一個文具盒里至少有2枝鉛筆。
。▽W生操作演示)
師:這種分法,實際就是先怎么分的?
生眾:平均分
師:為什么要先平均分?
生1:要想發(fā)現(xiàn)存在著“總有一個文具盒里一定至少有2枝”,先平均分,余下1枝,不管放在那個文具盒里,一定會出現(xiàn)“總有一個文具盒里一定至少有2枝”。
生2:這樣分,只分一次就能確定總有一個文具盒至少有幾枝筆了。
把筆盡量每個文具盒里都放,還要盡量平均放。怎樣用算式表示呢?
4÷3=1……11+1=2
5、那照這樣的思路:把6枝鉛筆放進5個文具盒,怎樣想?(用鉛筆操作演示)6÷5=1……11+1=2
把7枝鉛筆放進6個文具盒,怎樣想?……
100枝鉛筆放進99個文具盒呢?
師提問:發(fā)現(xiàn)了什么規(guī)律?
生小結,師整理:鉛筆數(shù)比文具盒數(shù)多1,不管怎么放,總有一個文具盒里至少放進2枝鉛筆。(同桌之間說一說)
第二步:研究鉛筆數(shù)比文具盒數(shù)不是多1的現(xiàn)象。
1、師:研究到這兒,還想繼續(xù)研究嗎?還有哪些值得我們繼續(xù)研究的問題?(生自主提問:如不是多1,什么是抽屜原理等等。)
2、師:如果鉛筆數(shù)比文具盒數(shù)不是多1,而是多2、3……,總有一個文具盒里至少會有幾枝鉛筆?
。ǔ鍪荆喊5本書放進2個抽屜里,總有一個抽屜里至少會有幾本書呢?)
生獨立思考,在小組內(nèi)交流,匯報。
師:許多同學都沒有再擺學具,用的什么方法?
生:平均分。把5本書平均分到2個抽屜里,每個抽屜里放2本書,還剩一本書,無論放在哪個抽屜里,總有一個抽屜里至少有3本書。生:5÷2=2……12+1=3
。ǔ鍪荆5本書放進3個抽屜呢?8本書放進5個抽屜呢?)
5÷3=1……21+1=28÷5=1……31+3=4
師:至少數(shù)為什么不是“商+余數(shù)”?(小組討論,匯報)
4、對比觀察算式,你能發(fā)現(xiàn)求至少數(shù)的規(guī)律嗎?
物體數(shù)÷抽屜數(shù)=商……余數(shù)至少數(shù)=商+1
5、總結抽屜原理,運用抽屜原理的關鍵是什么?(找準物體數(shù)和抽屜數(shù)),閱讀相關資料。
a÷n=b……c(c≠0)把a個物體放進n個抽屜里,總有一個抽屜里至少放進(b+1)個物體。
三、應用原理。
1、請你試一試。(口答,指出什么是物體數(shù),什么是抽屜數(shù))
。1)6只鴿子飛回5個鴿舍,至少有2只鴿子要飛進同一鴿舍,為什么?
(2)把13只小兔關在5個籠中,至少有幾只兔子要關在同一個籠里?
。3)有5袋餅干,每袋10快,發(fā)給6個小朋友,總有一個小朋友至少分到幾塊餅干?
2、下面的說法對嗎?說說你的理由。
向東小學6年級共有370名學生,其中六(2)班有49名學生。
A、六年級里至少有2名學生的生日是同一天。
。370個物體,366個抽屜)
B、六(2)班只有5名學生的生日在同一月。
。49個物體,12個抽屜,“只有”就是一定)
C、六(2)至少有25位學生是同一性別。
3、玩“猜?lián)淇恕钡挠螒颉?/p>
抽掉大小王,抽出5張牌,至少幾張是同花色?5÷4=1……11+1=2
抽15張至少有幾張數(shù)字相同?15÷13=1……21+1=2
4、學生把學生生活中能用抽屜原理解釋的現(xiàn)象寫下來。
留心觀察+細心思考=偉大發(fā)現(xiàn)
四、全課總結。
抽屜原理教學設計10
教學目標:
1.使學生能理解抽取問題中的一些基本原理,并能解決有關簡單的`問題。
2.體會數(shù)學與日常生活的聯(lián)系,了解數(shù)學的價值,增強應用數(shù)學的意識。
教學重點:
抽取問題。
教學難點:
理解抽取問題的基本原理。
教學過程:
一、創(chuàng)設情境,復習舊知
1、出示復習題:
師:老師這兒有一個問題,不知道哪位同學能幫助解答一下?
2、課件出示:把3個蘋果放進2個抽屜里,總有一個抽屜至少放2個蘋果,為什么?
3、學生自由回答。
抽屜原理教學設計11
教學目標
1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3.通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
教學重、難點
經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學過程
一、問題引入。
師:同學們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準備了3把椅子,請4個同學上來,誰愿來?
1.游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。
2.討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?
游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。
引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。
二、探究新知
。ㄒ唬┙虒W例1
1.出示題目:有4枝鉛筆,3個盒子,把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?
師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師出示各種情況。
板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),問題:4個人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學。4支筆放進3個盒子里呢?
引導學生得出:不管怎么放,總有一個盒子里至少有2枝筆。
問題:
。1)“總有”是什么意思?(一定有)
。2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)
教師引導學生總結規(guī)律:我們把4枝筆放進3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現(xiàn)了這個結論。那么,你們能不能找到一種更為直接的方法得到這個結論呢?
學生思考并進行組內(nèi)交流,教師選代表進行總結:如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。
問題:把6枝筆放進5個盒子里呢?還用擺嗎?把7枝筆放進6個盒子里呢?把8枝筆放進7個盒子里呢?把9枝筆放進8個盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)
總結:只要放的鉛筆數(shù)盒數(shù)多1,總有一個盒里至少放進2支。
2.完成課下“做一做”,學習解決問題。
問題:6只鴿子飛回5個鴿籠,至少有2只鴿子要飛進同一個鴿籠里,為什么?
。1)學生活動—獨立思考自主探究
(2)交流、說理活動。
引導學生分析:如果一個鴿籠里飛進一只鴿子,最多飛進4只鴿子,還剩一只,要飛進其中的一個鴿籠里。不管怎么飛,至少有2只鴿子要飛進同一個鴿籠里。所以,“至少有2只鴿子飛進同一個籠里”的結論是正確的。
總結:用平均分的方法,就能說明存在“總有一個鴿籠至少有2只鴿子飛進一個個籠里”。
。ǘ┙虒W例2
1.出示題目:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?把7本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?把9本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
。艚o學生思考的空間,師巡視了解各種情況)
2.學生匯報,教師給予表揚后并總結:
總結1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。
總結2:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。
問題:如果把5本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?用“商+2”可以嗎?(學生討論)
引導學生思考:到底是“商+1”還是“商+余數(shù)”呢?誰的結論對呢?(學生小組里進行研究、討論。)
總結:用書的`本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。
師:同學們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用!俺閷显怼钡膽檬乔ё?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。
。ㄈ⿲W生自學例題3并進行自主交流,試著用手中的用具模擬演示場景。
三、解決問題
四、全課小結
抽屜原理教學設計12
【教學內(nèi)容】
《義務教育課程標準實驗教科書·數(shù)學》六年級下冊。
【教材分析】
讓學生初步了解簡單“抽屜原理”,教材借助把4枝鉛筆放進3個文具盒中的操作情景,介紹了較簡單的“抽屜原理”,通過用“抽屜原理”解決簡單的實際問題,初步感受數(shù)學的魅力。主要培養(yǎng)學生的思考和推理能力,讓學生初步經(jīng)歷“數(shù)學原理”的過程,提高學生數(shù)學應用意識。
【學情分析】
教材借助把4枝鉛筆放進3個文具盒中的操作情景,介紹了較簡單的“抽屜原理”。學生在操作實物的過程中可以發(fā)現(xiàn)一個現(xiàn)象:不管怎么放,總有一個文具盒里至少放進2枝鉛筆,從而產(chǎn)生疑問,激起尋求答案的欲望。為了解釋這一現(xiàn)象,教材呈現(xiàn)了枚舉。
【教學目標】
1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3.通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
【教學重點】
經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
【教學難點】
理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
【教具、學具準備】
每組都有3個文具盒和4枝鉛筆。
【教學過程】
一、談話導入
教師:同學們,你們在電腦上玩過“電腦算命”嗎?“電腦算命”看起來很深奧,只要報出你的出生的年、月、日和性別,一按鍵,屏幕上就會出現(xiàn)所謂性格、命運、財運等。通過今天的`學習,我們掌握了“抽屜原理”之后,你就不難證明這種“電腦算命”是非常可笑和荒唐的,是不能信的鬼把戲。
板書:抽屜原理
教師:通過學習,你想解決那些問題?
根據(jù)學生回答,教師把學生提出的問題歸結為:“抽屜原理”是怎樣的?這里的“抽屜”是指什么?運用“抽屜原理”能解決那些問題?怎樣運用“抽屜原理”解決實際問題?
二、通過操作,探究新知
。ㄒ唬┱J識“抽屜原理”
出示題目:有3枝鉛筆,2個盒子,把3枝鉛筆放進2個盒子里,怎么放?有幾種不同的放法?
師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師板書各種情況(3,0)(2,1)
師:5個人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學。3支筆放進2個盒子里呢?
生:不管怎么放,總有一個盒子里至少有2枝筆?
師:是這樣嗎?誰還有這樣的發(fā)現(xiàn),再說一說。
師:那么,把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?請同學們實際放放看。(師巡視,了解情況,個別指導)
師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學生擺的情況,師板書各種情況。
。4,0,0)(3,1,0) (2,2,0)(2,1,1),
師:還有不同的放法嗎?
生:沒有了。
師:你能發(fā)現(xiàn)什么?
生:不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:“總有”是什么意思?
生:一定有
師:“至少”有2枝什么意思?
生:不少于兩只,可能是2枝,也可能是多于2枝?
師:就是不能少于2枝。(通過操作讓學生充分體驗感受)
師:把3枝筆放進2個盒子里,和把4枝筆飯放進3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現(xiàn)了這個結論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結論呢?
學生思考——組內(nèi)交流——匯報
師:哪一組同學能把你們的想法匯報一下?
組1生:我們發(fā)現(xiàn)如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。
師:你能結合操作給大家演示一遍嗎?(學生操作演示)
師:同學們自己說說看,同位之間邊演示邊說一說好嗎?
師:這種分法,實際就是先怎么分的?
生眾:平均分
師:為什么要先平均分?(組織學生討論)
生1:要想發(fā)現(xiàn)存在著“總有一個盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。
生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?
師:同意嗎?那么把5枝筆放進4個盒子里呢?(可以結合操作,說一說)
師:哪位同學能把你的想法匯報一下,
生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:把6枝筆放進5個盒子里呢?還用擺嗎?
生:6枝鉛筆放在5個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:把7枝筆放進6個盒子里呢?
把8枝筆放進7個盒子里呢?
把9枝筆放進8個盒子里呢?……
你發(fā)現(xiàn)什么?
生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。
。ǘ┨骄啃轮
1.出示題目:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
把7本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
把9本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
。艚o學生思考的空間,師巡視了解各種情況)
2.學生匯報。
生1:把5本書放進2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。
板書:5本2個2本……余1本(總有一個抽屜里至有3本書)
7本2個3本……余1本(總有一個抽屜里至有4本書)
9本2個4本……余1本(總有一個抽屜里至有5本書)
師:2本、3本、4本是怎么得到的?生答完成除法算式。
5÷2=2本……1本(商加1)
7÷2=3本……1本(商加1)
9÷2=4本……1本(商加1)
師:觀察板書你能發(fā)現(xiàn)什么?
生1:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。
師:如果把5本書放進3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
生:“總有一個抽屜里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。
生:不同意!先把5本書平均分放到3個抽屜里,每個抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個抽屜里,總有一個抽屜里至少有2本書,不是3本書。
師:到底是“商+1”還是“商+余數(shù)”呢?誰的結論對呢?在小組里進行研究、討論。
交流、說理活動:
生1:我們組通過討論并且實際分了分,結論是總有一個抽屜里至少有2本書,不是3本書。
生2:把5本書平均分放到3個抽屜里,每個抽屜里先放1本,余下的2本可以在2個抽屜里再各放1本,結論是“總有一個抽屜里至少有2本書”。
生3我們組的結論是5本書平均分放到3個抽屜里,“總有一個抽屜里至少有2本書”用“商加1”就可以了,不是“商加2”。
師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個抽屜里至少有幾個物體呢?
生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。
師:同學們同意吧?
師:同學們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用!俺閷显怼钡膽檬乔ё?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。下面我們應用這一原理解決問題。
3.解決問題。71頁第3題。(獨立完成,交流反饋)
小結:經(jīng)過剛才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個小游戲。
三、應用原理解決問題
師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?
生:2張/因為5÷4=1…1
師:先驗證一下你們的猜測:舉牌驗證。
師:如有3張同花色的,符合你們的猜測嗎?
師:如果9個人每一個人抽一張呢?
生:至少有3張牌是同一花色,因為9÷4=2…1
四、全課小結
上面我們所證明的數(shù)學原理就是最簡單的“抽屜原理”,可以概括為:把m個物體任意放到m-1個抽屜里,那么總有一個抽屜中放進了至少2個物體。
五、思維訓練
1.從街上隨便找來13人,就可以斷定他們中至少有兩個人屬相(指鼠、牛、虎、兔……十二種生肖)相同。說明理由。
2.任意367名學生中,一定存在兩名學生,他們在同一天過生日。說明理由。
【教學反思】
1、小組活動很容易抓住學生的注意力,讓學生覺得這節(jié)課要探究的問題即好玩又有意義。
2、理解“抽屜原理”對于學生來說有著一定的難度。
3、部分學生很難判斷誰是物體,誰是抽屜。
抽屜原理教學設計13
桌上有十個蘋果,要把這十個蘋果放到九個抽屜里,無論怎樣放,我們會發(fā)現(xiàn)至少會有一個抽屜里面至少放兩個蘋果。這一現(xiàn)象就是我們所說的“抽屜原理”。
教學理念:
激趣是新課導入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學生置身游戲中開始學習,為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學習把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W生感興趣又易于理解的內(nèi)容。特別是對教材中的結論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建模”,使復雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標要求。
教學目標:
1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。
2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。
3.通過“抽屜原理”的靈活應用感受數(shù)學的魅力。
教學重難點:
重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學過程:
一、課前游戲引入。
師:同學們在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?(學生上來后)
師:聽清要求 ,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。
師:開始。
師:都坐下了嗎?
生:坐下了。
師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩個同學”我說得對嗎?
生:對!
師:老師為什么能做出準確的判斷呢?道理是什么?這其中蘊含著一個有趣的數(shù)學原理,這節(jié)課我們就一起來研究這個原理。(抽屜原理)
二、通過操作,探究新知
(一)探究例1
1、研究3枝鉛筆放進2個文具盒。
。1)要把3枝鉛筆放進2個文具盒 ,有幾種放法?請同學們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。
。2)反饋:兩種放法:(3,0)和(2,1)。
(3)從兩種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個文具盒至少放進2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)
。4)“總有”什么意思?(一定有)
。5)“至少”有2枝什么意思?(不少于2枝)
小結:在研究3枝鉛筆放進2個文具盒時,同學們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個文具盒放進2枝鉛筆)
2、研究4枝鉛筆放進3個文具盒。
。1)要把4枝鉛筆放進3個文具盒里,有幾種放法?請同學們動手擺一擺,再把你的想法在小組內(nèi)交流。
。2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
。3)從四種放法,同學們會有什么發(fā)現(xiàn)呢?(總有一個筆盒至少有2枝鉛筆)
。4)你是怎么發(fā)現(xiàn)的?
。5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個文具盒放進2枝鉛筆”。如果要讓每個文具盒里放的筆盡可能的少,你覺得應該要怎樣放?(每個文具盒都先放進一枝,還剩一枝不管放進哪個文具盒,總會有一個文具盒至少有2枝筆)(你真是一個善于思想的孩子。)
(6)這位同學運用了假設法來說明問題,你是假設先在每個文具盒里放1枝鉛筆,這種放法其實也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個文具盒,那么這個文具盒就有2枝鉛筆了)
(7)誰能用算式來表示這位同學的想法?(5÷4=1…1)商1表示什么?余數(shù)1表示什么?怎么辦?
。8)在探究4枝鉛筆放進3個文具盒的問題,同學們的方法有兩種,一是枚舉了所有放法,找規(guī)律,二是采用了“假設法”來說明理由,你覺得哪種方法更明了更簡單?
3、類推:把5枝鉛筆放進4個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把6枝鉛筆放進5個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把7枝鉛筆放進6個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把100枝鉛筆放進99個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
4、從剛才我們的探究活動中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個文具盒里至少放進2枝鉛筆。)
5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結論:“總有一個筆盒至少有2枝鉛筆!
6、小結:剛才我們分析了把鉛筆放進文具盒的情況,只要鉛筆數(shù)量多于文具盒數(shù)量時,總有一個文具盒至少放進2枝鉛筆。
這就是今天我們要學習的抽屜原理。既然叫“抽屜原理”是不是應該和抽屜有聯(lián)系吧?鉛筆相當于我們要準備放進抽屜的物體,那么文具盒就相當于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結論“總有一個抽屜里放進了2個物體!
7、在我們的生活中,常常會遇到抽屜原理,你能不能舉個例子?在課前我們玩的`游戲中,有沒有抽屜原理?
過渡:同學們非常了不起,善于運用觀察、分析、思考、推理、證明的方法研究問題,得出結論。同學們的思維也在不知不覺中提升了許多,那么讓我們再來研究這樣一組問題。
(二)探究例2
1、研究把5本書放進2個抽屜。
。1)把5本書放進2個抽屜會有幾種情況?(5,0)、(4,1)和(3,2)
(2)從三種情況中,我們可以得到怎樣的結論呢?(總有一個抽屜至少放進了3本書)
。3)還可以怎樣理解這個結論?先在每個抽屜里放進2本,剩下的1本放進任何一個抽屜,這個抽屜就有3本書了。
(4)可以把我們的想法用算式表示出來:5÷2=2…1(商2表示什么,余數(shù)1表示什么)2+1=3表示什么?
2、類推:如果把7本書放進2個抽屜中,至少有一個抽屜放進4本書。
如果把9本書放進2個抽屜中。至少有一個抽屜放進5本書。
如果把11本書放進3個抽屜中。至少有一個抽屜放進4本書。你是怎樣想的?(11÷3=3…2)商3表示什么?余數(shù)2表示什么?3+1=4表示什么?
3、小結:從以上的學習中,你有什么發(fā)現(xiàn)?(在解決抽屜原理時,我們可以運用假設法,把物體盡可量多地“平均分”給各個抽屜,總有一個抽屜比平均分得的物體數(shù)多1。)
4、經(jīng)過剛才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,個個都是了不起的數(shù)學家。 “抽屜原理”最先是由19世紀的德國數(shù)學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用!俺閷显怼钡膽檬乔ё?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。
5、做一做:
7只鴿子飛回5個鴿舍,至少有2只鴿子要飛進同一個佶舍里。為什么?
8只鴿子飛回3個鴿舍,至少有3只鴿子要飛時同一個鴿舍里。為什么?
。ㄏ茸寣W生獨立思考,在小組里討論,再全班反饋)
三、遷移與拓展
下面我們一起來放松一下,做個小游戲。
我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?
四、總結全課
這節(jié)課,你有什么收獲?
抽屜原理教學設計14
教學內(nèi)容:
教材簡析:
《抽屜原理》是義務教育課程標準實驗教科書數(shù)學六年級下冊第五單元數(shù)學廣角的教學內(nèi)容。這部分教材通過幾個直觀例子,借助實際操作,向學生介紹“抽屜原理”,使學生在理解“抽屜原理”這一數(shù)學方法的基礎上,對一些簡單的實際問題加以“模型化”,會用“抽屜原理”加以解決!俺閷显怼痹谏钪羞\用廣泛,學生在生活中常常能遇到實例,但并不能有意識地從數(shù)學的角度來理解和運用“抽屜原理”。教學中應有意識地讓學生理解“抽屜原理”的“一般化模型”。
學情分析:
六年級學生的邏輯思維能力、小組合作能力和動手操作能力都有了較大的提高,加上已有的生活經(jīng)驗,很容易感受到用“抽屜原理”解決問題帶來的樂趣。激趣是新課導入的抓手,喜歡和好奇心比什么都重要,游戲,讓學生置身游戲中開始學習,為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學習把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W生感興趣又易于理解的內(nèi)容。特別是對教材中的結論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建模”,使復雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標要求。
教學目標:
1、使學生初步了解抽屜原理,運用抽屜原理知識解決簡單的實際問題。
2、使學生經(jīng)歷抽屜原理的探究過程,通過動手操作、分析、推理等活動,發(fā)現(xiàn)、歸納、總結原理。
3、使學生通過“抽屜原理”的靈活應用感受數(shù)學的魅力;提高解決問題的能力和興趣。
教學重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
教學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。
教學過程:
一、課前游戲,導入新課。
游戲請5名同學到前面來,老師這有4張凳子,老師喊123開始,要求每位同學都必須坐在凳子上,引導:5位同學坐在4張椅子上,不管怎么坐,總有一把凳子上至少坐兩個同學。
我們剛才做了個小游戲,但小游戲蘊含著一個有趣的數(shù)學原理。今天我們就來研究這個有趣的數(shù)學原理——抽屜原理。
[設計意圖:把抽象的數(shù)學知識與生活中的游戲有機結合起來,使教學從學生熟悉和喜愛的游戲引入,讓學生在已有生活經(jīng)驗的基礎上初步感知抽象的“抽屜原理”,提高學生的學習興趣。]
二、通過操作,探究新知
。ㄒ唬┗顒右
1、出示題目:把4根小棒,放在3個杯子里,怎么放?有幾種不同的放法?
。ò鍟盒“4杯子3)
提出要求:把所有的.擺法都擺出來,看看你會有什么發(fā)現(xiàn)?
。1)同桌之間互相合作,動手擺,把各種情況記錄下來。
(2)指名一位同學展示不同擺法,教師板書。(4,0,0)(3,1,0)(2,2,0)(2,1,1),(3)引導學生觀察發(fā)現(xiàn):不管怎么放,總有一個杯子里至少有2根小棒。(板書:總有一個杯子里至少有)
。4)師生共同理解“總有”“至少”有2枝什么意思?
(5)明確:剛才同學們把所有擺法一一列舉出來,得到了這樣的。結論,我們稱之為“枚舉法”。
[設計意圖:學生通過自己動手操作,在實驗中、合作中、討論中發(fā)現(xiàn)規(guī)律,分析問題的形成,把動腦思考與動手操作相結合,獨立思考與小組合作相結合。讓同學之間互相幫助,相互提高,讓問題在學生的探究中得到解決。]
2、要把6根小棒放進5杯子里,你感覺會有什么結果呢?
。1)啟發(fā)學生猜想結果
把6根小棒放入五個杯子里,你感覺一下,不要動手擺,你感覺一下會有什么樣的結論?
(2)引導學生選擇合適的方法
提出要求:想一個快速而又簡單的方法,只擺一種情況,你就可以得到這個結論?
。3)學生嘗試操作驗證。
。4)全班交流,操作演示。
學生活動后組織交流:先每個杯子擺一根,每個杯子放1跟,5個杯子,就已經(jīng)放了5根,還有1根不管怎么放,總有一個杯子至少有兩根小棒
預設:如遇到每個杯子擺兩根,有的杯子空的,這樣有說服力嗎?有的杯子還空著,要先把每個杯子都裝上小棒才行。
。5)明確結論:把6根小棒放進5個杯子里,不管怎么放,總有一個杯子里至少有2枝小棒。
3、課件出示:
把100根小棒放進99個杯子呢?
談話:要不要也準備100根小棒和99根杯子呢?可以怎么辦?
引導用假設法進行思考:假設每個杯子放1跟,99個杯子,就已經(jīng)放了99根,還有1根不管怎么放,總有一個杯子至少有2根小棒。
這也是數(shù)學中一種很重要的方法“假設法”。
引導學生觀察小棒數(shù)和杯子數(shù),你有什么發(fā)現(xiàn)?
明確:這里的小棒數(shù)都比杯子數(shù)多1,當小棒數(shù)比杯子數(shù)多1時,總有一個杯子至少放了兩根小棒。
[設計意圖:注意鼓勵學生運用已有的知識對新學習的內(nèi)容進行聯(lián)想和猜測,再通過實驗和推理驗證,培養(yǎng)學生良好的學習和思考習慣。在猜測的基礎上進行實驗和推理,從“枚舉法”到“假設法”,使學生受到研究方法和思維方式的訓練,發(fā)展和提高自主學習的能力。]
(二)活動二
談話:接下來,我們把數(shù)學書當做物體數(shù)放入抽屜里,看看又有什么發(fā)現(xiàn)?
課件出示:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
板書:書抽屜總有一個抽屜放入算式
5235÷2=2……1
抽屜原理教學設計15
1、出示例2
把7本書放進3個抽屜中,不管怎么放,總有一個抽屜至少放進幾本書?(1)合作交流有幾種放法。
不難得出,總有一個抽屜至少放進3本。
。2)指名說一說思維過程。
如果每個抽屜放2本,放了6本書。剩下的'1本還要放進其中一個抽屜,所以至少有1個抽屜放進3本書。
2、如果一共有8本書會怎樣呢10本呢?
3、你能用算式表示以上過程嗎?你有什么發(fā)現(xiàn)?
7÷3=2……1 (至少放3本)
8÷3=2……2 (至少放4本)
10÷3=3……1 (至少放5本)
4、做一做
11只鴿子飛回4個鴿舍,至少有3只鴿子要飛進同一個鴿舍里。為什么?
四、質疑探究(5分)
1、鴿巢問題怎樣求?
小結:先平均分配,再把余數(shù)進行分配,得出的就是一個抽屜至少放進的本數(shù)。
2、做一做。
69頁做一做2題。
【抽屜原理教學設計】相關文章:
抽屜原理教學設計12-14
抽屜原理教學設計02-01
《抽屜原理》教學設計04-15
抽屜原理教學設計03-28
《抽屜原理》教學設計02-22
《抽屜原理》教學設計最新04-11
《抽屜原理》教學設計優(yōu)秀12-12
《抽屜原理》教學設計優(yōu)秀【經(jīng)典】02-10
(必備)抽屜原理教學設計08-08