北師大版三角形內角和教學設計推薦
作為一名專為他人授業(yè)解惑的人民教師,時常需要用到教學設計,教學設計是連接基礎理論與實踐的橋梁,對于教學理論與實踐的緊密結合具有溝通作用。那么優(yōu)秀的教學設計是什么樣的呢?下面是小編為大家收集的北師大版三角形內角和教學設計推薦,供大家參考借鑒,希望可以幫助到有需要的朋友。
北師大版三角形內角和教學設計推薦 篇1
【教材內容】:
四年級數(shù)學下冊
【教學目標】:
1、探索與發(fā)現(xiàn)三角形的內角和是180°,已知三角形的兩個角度,會求出第三個角度。
2、培養(yǎng)學生動手操作和合作交流的能力,促進掌握學習數(shù)學的方法。
3、培養(yǎng)學生自主學習、積極探索的好習慣,激發(fā)學生學習數(shù)學應用數(shù)學的興趣。
【教學重點和難點】:
重點掌握三角形的內角和是180°,會應用三角形的內角和解決實際問題;難點是探索性質的過程。
【教材分析】
《三角形內角和》屬于空間與圖形的范疇,是在學生已經接觸了三角形的穩(wěn)定性和三角形的分類相關知識后對三角形的進一步研究,探索三個內角的和。教材中安排了學生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發(fā)現(xiàn)三角形的內角和是180°。擴充了學生認識圖形的一般規(guī)律從直觀感性的認識到具體的性質探索,更加深入的培養(yǎng)了學生的空間觀念。
【教學過程】
一、創(chuàng)設情境,激發(fā)興趣。
出示課件,提出兩個兩個疑問:
1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內角和比你大,是這樣的嗎?
2、三個形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內角和各不相同,是這樣的嗎?老師發(fā)現(xiàn)它們爭論的焦點是三角形的內角和的問題,那什么是三角形的內角?什么又是三角形的內角和呢?
二、初建模型,實際驗證自己的猜想
在第一步的'基礎上學生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內角和,從而證明三角形的內角和與三角形的大小和形狀沒有關系都接近180度。這時教師要組織學生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內角,并計算出它們的總和是多少?把小組的測量結果和討論結果記錄下來以便全班進行交流。
三角形的形狀
三角形每個內角的度數(shù)
內角和
銳角三角形
鈍角三角形
直角三角形
等腰三角形
等邊三角形
三、再建模型,徹底的得出正確的結論
因為在上一環(huán)節(jié)學生已經得出三角形的內角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產生一些誤差。有的同學難免可能猜想三角形的內角和就是180度呢?我們繼續(xù)研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內角和都是180度呢?教師放手讓學生去思考、去動手操作,對有困難和有疑問的同學進行提示和指導。然后讓學生到前面演示驗證的方法,教師借助多媒體進行演示。
四、應用新知,鞏固練習
1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數(shù)。(1小題屬于基本練習)
2、試一試,在直角三角形中已知其中的一個角求另一個角的度數(shù)
3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數(shù)求三角形的頂角。
4、說一說,判斷三角形的兩個銳角的和大于90度;直角三角形的兩個兩個銳角的和等90度;等腰三角形沿著高對折,每個三角形的內角和是90度。這些說法是否正確?由兩個三角形拼成一個大的三角形,大三角形的內角和是360度,對嗎?
五、拓展與延伸
通過三角形的內角和是180度的事實來探討四邊形、五邊行的內角和。
北師大版三角形內角和教學設計推薦 篇2
三角形內角和教學設計北師大版
【教材分析】
《三角形內角和》是北師大版《數(shù)學》四年級下冊的內容。是在學生學習了三角形的概念及特征之后進行的,它是掌握多邊形內角和及其他實際問題的基礎,因此,掌握三角形的內角和是180度這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內角和這一情境,讓學生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內角和是180度。教材還安排了試一試,練一練的內容。已知三角形兩個內角的度數(shù),求出第三個角的度數(shù)。
【學生分析】
經過近四年的課改實驗,孩子們已經有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學產生了濃厚的興趣。1.知識方面:學生已經掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的.知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。
【學習目標】
知識目標:掌握三角形內角和是180度這一規(guī)律,并能實際應用。
能力目標: 培養(yǎng)學生主動探索、動手操作的能力。培養(yǎng)學生收集、整理、歸納信息的能力。使學生養(yǎng)成良好的合作習慣。
情感目標: 讓學生體會幾何圖形內在的結構美。
【教學過程】
一、 情景激趣,質疑猜想。
播放動畫片:在圖形王國中,有一天三角形大家庭里為三角形內角和的大小爆發(fā)了一場激烈的爭吵。
鈍角三角形大聲叫著:我的鈍角大,我的內角和一定比你們的內角和大。銳角三角形也不示弱:我的銳角雖然比鈍角小,但我的內角和并不比你小。直角三角形說:別爭了,三角形的內角和都是180。我們的內角和是一樣大的。
師:想一想,什么是三角形的三個內角的和。
生:三角形的三個內角的度數(shù)和。
師:同學們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?
學生進行猜想,自由發(fā)言。
。ㄔO計意圖:教師借助多媒體技術創(chuàng)設問題情境,架起數(shù)學學習與現(xiàn)實生活,抽象數(shù)學與具體問題之間的橋梁,激發(fā)了學生的學習興趣。鼓勵學生主動質疑猜想是培養(yǎng)學生學會學習的重要途徑。)
二、自主探究,驗證猜想
師:剛才大部分同學都猜直角三角形說的對。三角形的三個內角的和都是 180,你能設法驗證這個猜想嗎?
生1:能。我量出三角形的三個內角和度數(shù),加起來是否接近180(量的時候可能會有些誤差)。
生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。
生3:我把三角形的三個角撕下來,拼一拼是否180。
生4:我把三角形的三個角往里折,看一看這三個角是否折成一個平角。
師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧。▽W生把三角形的三個內角分別標上1、2、3,以免在剪拼時把內角搞混了。)
學生邊實驗邊整理信息,完成實驗報告單后,學習小組內進行交流討論。
。ㄔO計意圖:驗證猜想為學生提供了做數(shù)學的機會,讓每個學生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學生在操作中自主探究數(shù)學知識的產生發(fā)展過程。驗證自己的猜想,鼓勵學生用不同的方法進行驗證,促進學生創(chuàng)新能力的發(fā)展。)
三、交流評價,歸納結論。
學生操作驗證,完成實驗報告單后,利用投影儀展示學生填寫的實驗報告單。
實驗報告單
實驗名稱
北師大版三角形內角和教學設計推薦 篇3
教學內容:
教材第67頁例6、“做一做”及教材第69頁練習十六第1~3題。
教學目標:
1.通過動手操作,使學生理解并掌握三角形的內角和是180°的結論。
2.能運用三角形的內角和是180°這一結論,求三角形中未知角的度數(shù)。
3.培養(yǎng)學生動手動腦及分析推理能力。
重點難點:
掌握三角形的內角和是180°。
教學準備:
三角形卡片、量角器、直尺。
導學過程
一、復習
1、什么是平角?平角是多少度?
2、計算角的度數(shù)。
3、回憶三角形的相關知識。(出示直角三角形、銳角三角形、鈍角三角形)
二、新知
。ㄔO計意圖:讓學生經歷質疑驗證結論這樣的思維過程,真正整體感知三角形內角和的知識,真正驗證了“實踐出真知” 的道理,這樣的教學,將三角形內角和置于平面圖形內角和的大背景中,拓展了三角形內角和的數(shù)學知識背景,滲透數(shù)學知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學生的綜合素養(yǎng))
1、讀學卡的學習目標、任務目標,做到心里有數(shù)。
2、揭題:課件演示什么是三角形的內角和。
3、猜想:三角形的內角和是多少度。
4、驗證:
。1)初證:用一副三角板說明直角三角形的內角和是180°。
(2)質疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
。3)再證:請按學卡提示,拿出學具,選擇自己喜歡的方式驗證三角形的內角和 是180°(師巡視)
。4)匯報結論(清楚明白的給小組加優(yōu)秀10分)
5、結論:修改板書,把“?”去掉,寫“是”。
6、追問:把兩塊三角板拼在一起,拼成的大三角形的內角和是多少?說明三角形無論大小它的內角和都是180°(課件演示)
7、看微課感知“偉大的發(fā)現(xiàn)”(設計意圖:讓學生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)
三、知識運用(課件出示練習題,生解答)
1、填空
。1)一個三角形,它的兩個內角度數(shù)之和是110 ,第三個內角是( ).
。2)一個直角三角形的一個銳角是50,則另一個銳角是( )。
。3)等邊三角形的3個內角都是( )。
。4)一個等腰三角形,它的一個底角是50,那么它的頂角是( )。
(5)一個等腰三角形的頂角是60,這個三角形也是( )三角形。
2、判斷
。1)一個三角形中最多有兩個直角。 ( )
。2)銳角三角形任意兩個內角的和大于90。 ( )
。3)有一個角是60的等腰三角形不一定是等邊三角形。 ( )
。4)三角形任意兩個內角的和都大于第三個內角。 ( )
(5)直角三角形中的兩個銳角的和等于90。 ( )
四、拓展探究
根據(jù)所學的知識,你能想辦法求出四邊形、五邊形的內角和嗎?
1、小組討論。2、匯報結果。3、課件提示幫助理解。
五、自我評價根據(jù)學卡要求給自己評出“優(yōu)”“良好”“合格”。
六、談談自己本節(jié)課的收獲。
教學反思
今天我講了《三角形內角和》這部分內容,學生其實通過不同途徑已經知道三角形內角和是180°,是不是說這節(jié)課的重難點就已經突破了,只要學生能應用知識解決問題就算是達到這節(jié)課的.教學目標了呢?我想應該好好思考教材背后要傳遞的東西。
任何規(guī)律的發(fā)現(xiàn)都要經過一個猜測、驗證的過程,不經歷這個探究的過程,學生對于這一內容的認識就不深刻,聰明的孩子還會懷疑三角形內角和是180°嗎?。因此這個結論必須由實踐操作得出結論。所以最終我把本課定為一個實踐探究課。
如何開篇點題,是我這次要解決的第一個問題。怎樣才能讓學生由已知順利轉向對未知的探求,怎樣直接轉向研究三個角的“和”的問題呢?因此我只設計了三個簡單的問題然學生快速進入主題。
如何驗證內角和是180°,是我一直比較糾結的環(huán)節(jié)。由于小學生的知識背景有限,無法利用證明給予嚴格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點,那么就都會有誤差,其實都無法嚴格的證明。但是這節(jié)課我們除了要尊重知識的嚴謹還應該尊重孩子的認知。如果通過剪拼、折疊、想象后,還有的孩子認為三角形內角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴謹,同時對知識有一種尊重,對自己的操作結果充滿自信,否則拼個差不多也可以簡單的認同了內角和是180°。
本節(jié)課的練習的設置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內角和體會三角形內角和跟大小無關、跟形狀無關,到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內角和是多少度,求被剪開的三角形,形成的新圖形的內角和是多少度,這些都是對三角形內角和的一次拓展。讓學生的認知發(fā)生沖突,提出挑戰(zhàn)。
給學生一個平臺,她會給你一片精彩。通過動手操作來驗證內角和是否是180°,學生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當有了空間,孩子才會施展他們的才華。這是我的一大收獲。
前邊驗證時間過多,到練習時間就有些少,特別是求四邊形和六邊形內角和時,給的時間過短,學生沒有充分思維。
總而言之,這次的公開課,給了我一次學習和鍛煉的機會。在教案設計時,該怎么樣把每一個環(huán)節(jié)落實到位,怎么樣說好每一句話,預設好每一個環(huán)節(jié),在教研中聽取各位教師的點評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學團隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻自己的想法,讓我在教學中,能夠在一個輕松和諧的教學氛圍中與學生共同去探討,去發(fā)現(xiàn),去學習。
北師大版三角形內角和教學設計推薦 篇4
知識與技能
1、通過小組合作,運用直觀操作的方法,探索并發(fā)現(xiàn)三角形內角和等于180。能應用三角形內角和的性質解決一些簡單問題。
2、經歷親自動手實踐、探索三角形內角和的過程,體會運用“量一量”、“算一算”、“拼一拼”、“折一折”進行驗證的數(shù)學思想方法,提高動手操作能力和數(shù)學思考能力。
情感態(tài)度與價值觀
3、使學生在數(shù)學活動中獲得成功的體驗,感受探索數(shù)學規(guī)律的樂趣。培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力,在學生親自動手實踐和歸納中,感受理性的美。
教學重點:
1、探索和發(fā)現(xiàn)三角形三個內角和的度數(shù)和等于180o。
2、已知三角形的兩個角的度數(shù),會求出第三個角的度數(shù)。
教學難點:
已知三角形的兩個角的度數(shù),會求出第三個角的度數(shù)。
方法與過程
教法:主動探究法、實驗操作法。
學法:小組合作交流法
教學準備:小黑板、學生、老師準備幾個形狀不同的三角形、量角器。
教學課時:1課時
教學過程
一、預習檢查
說一說在預習課中操作的感受,應注意哪些問題,三角形的內角和等于多少度? 組內交流訂正。
二、情景導入呈現(xiàn)目標
故事引入。一天,大三角形對小三角形說:“我的個頭大,所以我的內角和一定比你的大。”小三角形很不甘心地說:“是這樣的嗎?”揭示課題,出示目標。產生質疑,引入新課。
三、探究新知
自主學習
1、活動一、比一比2、活動二、量一量
。1)什么是內角?
(2)如何得到一個三角形的內角和?
(3)小組活動,每組同學分別畫出大小,形狀不同的若干個三角形。分別量出三個內角的度數(shù),并求出它們的和。
(4)填寫小組活動記錄表。發(fā)現(xiàn)大小,形狀不同的每個三角形,三個內角的度數(shù)和都接近度。
3、說一說,做一做。
(1)我們把三個角撕下來,再拼在一起,看一看會是怎樣的。
。2)把三個角折疊在一起,三個角在一條直線上。從而得到三角形三個內角和等于()度。
四、當堂訓練(小黑板出示內容)
1、三角形的內角和是()°,一個等腰三角形,它的一個底角是26°,它的頂角是()。
2、長5厘米,8厘米,()厘米的三根小棒不能圍成一個三角形。
3、三角形具有()性。
4、一個三角形中有一個角是45°,另一個角是它的2倍,第三個角是(),這是一個()三角形。
5、按角的大小,三角形可以分為()三角形、()三角形、()三角形。
6、交流學案第三題!∠泉毩⒆,最后組內交流。
五、點撥升華
任意三角形三個角的度數(shù)和等于180度。獨立思索小組交流總結方法教師點撥。
六、課堂總結
通過這節(jié)課的'學習,你有什么新的收獲或者還有什么疑問?先小組內說一說,最后班上交流。
七、拓展提高
媽媽給淘氣買了一個等腰三角形的風箏。它的頂角是40°,它的一底角是多少? 先獨立做,最后組內交流。
板書設計:
三角形的內角和
測量三個角的度數(shù)求和:結論:
教學反思:三角形內角和等于180°,對于大多數(shù)同學來說并不是新知識。因為在此之前學生已經運用過這一知識。因此,我覺得這一堂課的重點不是讓學生記住這一結論,也不是怎樣運用它去解結問題。而是讓學生證明這一結論,即要讓學生親歷探索過程并在探索中驗證。在教學中,通過豐富的材料讓學生動手操作,通過量、撕拼、折拼等實驗活動,讓學生得到的不僅僅是三角形內角和的知識,更重要的是學到了怎樣由已知知識探索未知的思維方式與方法,激發(fā)了他們主動探索知識的欲望。通過多種實驗進行操作驗證也讓學生明白了只要善于思考,善于動手就能找到解決問題的方法。
當然,在教學中也還有一些不順利的地方,比如一些動手能力差的學生未能及時跟進,對于方法不對的學生未能及時指導和幫助等。但是本堂課采用這樣的方式展開教學是學生喜歡的也是有成效的。
北師大版三角形內角和教學設計推薦 篇5
【教材分析】:
新課標把三角形的內角和作為第二學段中三角形的一個重要組成部分。本課是安排在三角形的特性及分類之后進行的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。教材所呈現(xiàn)的內容,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,安排了量一量、算一算和剪一剪、拼一拼兩個實驗操作活動,意圖使學生在動手操作、合作交流中發(fā)現(xiàn)并形成結論。
【教學目標】
知識與技能
1.理解和掌握三角形的內角和是180度。
2.運用三角形的內角和的知識解決實際問題。
過程與方法
經歷三角形的內角和的探究過程,體驗“發(fā)現(xiàn)——驗證——應用”的學習模式。
情感態(tài)度與價值觀
在學習活動中,滲透探究知識的方法,提高學生學習的能力,培養(yǎng)學生的創(chuàng)新精神和實踐能力。
【教學重點】
重點:理解和掌握三角形的內角和是180度。
突破方法:引導學生用測量或剪拼的方法探究三角形的內角和。合理猜想,測量驗證。
【教學難點】
用三角形的內角和解決實際問題。
突破方法:推理分析計算。運用推理,正確計算。
教法:質疑
【教學方法】
引導,演示講解。
學法:實踐操作,小組合作。
【教學準備】:
多媒體課件,銳角,直角,鈍角三角形的`硬紙片,剪刀。
【教學時間】
一課時
【教學過程】
一.創(chuàng)設情境,引入新課
師:同學們,我們這倆天學習了三角形的分類,通過對角的分類,我們能夠分成幾類三角形?
生:三類,分別為銳角三角形,直角三角形,鈍角三角形。
師:嗯,真好,那么對邊的分類呢?
生:倆類,分別為等腰三角形,等邊三角形。
師:老師想讓同學們幫老師畫一個三角形,能做到嗎?
生:能。
師:請聽要求,畫一個有一個角是直角的三角形,開始。(學生動手操作)
師:再來一個可以嗎?請聽要求,畫一個有倆個角是直角的三角形,開始。
生:不能畫,因為當倆個角是90度的時候,倆個頂點在一條線上,不能組成封閉圖形。
師:回答的真好,那么為什么會出現(xiàn)這種情況呢?是因為三角形中的角而引起的,那么同學們想不想知道其中的秘密呢?
生:想。
師:好,那么我們今天就一起來學習“三角形的內角和”(出示板書)
。ㄔO計意圖:通過學生的動手操作,發(fā)現(xiàn)問題所在,這樣更能調動學生的學習興趣,為了更好的學習這節(jié)課做鋪墊.)
二.探究新知
師:昨天呢,老師讓同學們一人做一個自己喜歡的三角形,請同學們拿出來,看一看你們做的是什么樣子的三角形。
生1:銳角三角形。
生2:直角三角形。
生3:鈍角三角形。
師:嗯,我們在上個星期學習了三角形的各部分名稱,誰能幫我告訴下同學們,角在哪里呢?
生:里面的三個角,可以用角1,角2,角3來表示。
師:嗯,這三個角我們也可以說成是三角形的內角,好了,今天我們既然學習三角形的內角和,也就是求成這三個角的度數(shù)和,你們猜一猜三角形內角和的度數(shù)是多少呢?
生:三角形的內角和是180度。
師:那么我們能不能一起用一些好的辦法來驗證一下呢?
生1:我們可以用量角器分別量出這三個內角的度數(shù),然后再加在一起就可以求出三角形內角的和了。
師:還有其他的辦法嗎?
生2:我們可以用剪子剪下三個角,然后把它們拼在一起,看看這三個角拼在一起之后能夠呈現(xiàn)出什么樣子的角。
生3:我可以用折的方法,把三個角的度數(shù)折在一起。
師:同學們說的真好,既然有這么多的方法,到底哪個方法好呢?我們一起來研究一下,我把全班分成倆個小組,一隊用量的方法,一隊用拼的方法,看看哪個小組做的又對又快,開始。
。ㄔO計意圖:通過學生的動手操作,合作交流,真正的把課堂還給學生,讓學生成為學習的主體,教師適時引導,突出學生的學習的能力與價值。)
三.總結任意三角形的內角和是180度并做適當練習。
四.板書設計
三角形的內角和
量一量銳角三角形:75度+48度+58度=181度
直角三角形:90度+45度+45度=180度
鈍角三角形:120度+38度+22度=180度
拼一拼圖形呈現(xiàn)
折一折圖形呈現(xiàn)
北師大版三角形內角和教學設計推薦 篇6
【教材分析】
《三角形內角和》是北師大版《數(shù)學》四年級下冊的內容。是在學生學習了三角形的概念及特征之后進行的,它是掌握多邊形內角和及其他實際問題的基礎,因此,掌握“三角形的內角和是180度”這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內角和這一情境,讓學生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內角和是180度。教材還安排了“試一試”,“練一練”的內容。已知三角形兩個內角的度數(shù),求出第三個角的度數(shù)。
【學生分析】
經過近四年的課改實驗,孩子們已經有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學產生了濃厚的興趣。1.知識方面:學生已經掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。
【學習目標】
知識目標:掌握三角形內角和是180度這一規(guī)律,并能實際應用。
能力目標: 培養(yǎng)學生主動探索、動手操作的能力。培養(yǎng)學生收集、整理、歸納信息的能力。使學生養(yǎng)成良好的合作習慣。
情感目標: 讓學生體會幾何圖形內在的結構美。
【教學過程】
一、 情景激趣,質疑猜想。
播放動畫片:在圖形王國中,有一天三角形大家庭里為“三角形內角和的大小”爆發(fā)了一場激烈的爭吵。
鈍角三角形大聲叫著:“我的鈍角大,我的內角和一定比你們的內角和大!变J角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內角和并不比你小!敝苯侨切握f:“別爭了,三角形的內角和都是180°。我們的內角和是一樣大的。”
師:想一想,什么是三角形的三個內角的和。
生:三角形的三個內角的度數(shù)和。
師:同學們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的'對?
學生進行猜想,自由發(fā)言。
。ㄔO計意圖:教師借助多媒體技術創(chuàng)設問題情境,架起數(shù)學學習與現(xiàn)實生活,抽象數(shù)學與具體問題之間的橋梁,激發(fā)了學生的學習興趣。鼓勵學生主動質疑猜想是培養(yǎng)學生學會學習的重要途徑。)
二、自主探究,驗證猜想
師:剛才大部分同學都猜直角三角形說的對。三角形的三個內角的和都是 180°,你能設法驗證這個猜想嗎?
生1:能。我量出三角形的三個內角和度數(shù),加起來是否接近180°(量的時候可能會有些誤差)。
生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。
生3:我把三角形的三個角撕下來,拼一拼是否180°。
生4:我把三角形的三個角往里折,看一看這三個角是否折成一個平角。
……
師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧!(學生把三角形的三個內角分別標上∠1、∠2、∠3,以免在剪拼時把內角搞混了。)
學生邊實驗邊整理信息,完成實驗報告單后,學習小組內進行交流討論。
。ㄔO計意圖:驗證猜想為學生提供了“做數(shù)學”的機會,讓每個學生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學生在操作中自主探究數(shù)學知識的產生發(fā)展過程。驗證自己的猜想,鼓勵學生用不同的方法進行驗證,促進學生創(chuàng)新能力的發(fā)展。)
三、交流評價,歸納結論。
學生操作驗證,完成實驗報告單后,利用投影儀展示學生填寫的實驗報告單。
實驗報告單
實驗名稱
三角形內角和
實驗目的
探究三角形內角和是多少度。
實驗材料
尺子
剪刀
量角器
銳角三角形紙片
直角三角形紙片
鈍角三角形紙片
我的方法
我的發(fā)現(xiàn)
我的表現(xiàn)
自評
互評
學生在展示過程中,充分交流和討論實驗中各自使用的方法和發(fā)現(xiàn),教師要對學生的閃光點及時進行表揚和鼓勵。
師生共同歸納,得出結論:
三角形內角和等于180°
(設計意圖:各學習小組匯報自己的驗證過程,展示探究的成果。對學生探索發(fā)現(xiàn)的方法、策略進行總結歸納,集思廣益,取長補短達到共識。在交流、歸納過程中,及時肯定其中的閃光點給予表揚和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)
四、分層練習,鞏固創(chuàng)新。
、僬n件出示:
師:這個三角形是什么三角形?知道幾個內角的度數(shù)?
生:直角三角形,知道一個角是30°,還有一個角是90°。∠A=90°-30°=60°。
師:根據(jù)今天所學的知識,誰能求出A的度數(shù)?大家自己試一試。
學生做完后反饋講評時讓學生說說自己的方法。
生1:用三角形內角的和(180°)減去30°再減去90°,算出∠A是60°。
∠A=180°-30°-90°=60°。
生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。
、趯W生完成完成P29的第一題。
引導學生按照前面的方法獨立完成,教師巡視,集體訂正。
、鄄乱徊氯切蔚牧硗鈨蓚角可能各是多少度。
同桌同學互相說一說。(答案不唯一)
、苄〗M操作探究活動。
讓學生剪出幾個不同的四邊形,按表中所給的方法以做一做,并填一填。
方 法
四邊形內角和
用量角器量出每個內角的度數(shù),并相加。
把四邊形四個角剪下來,拼在一起。
把四邊形分為兩個三角形。
填表后讓學生想一想、互相說一說,四邊形內角和是多少度?
。ㄔO計意圖:引導學生將探究學習活動中所獲得的結論經驗和方法運用于探索解決簡單的實際問題。組織學生參與具有趣味性、操作性和開放性的練習活動,讓學生在鞏固練習中培養(yǎng)動手能力、實踐能力和創(chuàng)新思維。)
北師大版三角形內角和教學設計推薦 篇7
【教學內容】
新課標人教版四年級下冊第五單元《三角形》
【教材分析】
“三角形內角和”這節(jié)課是新課標人教版四年級下冊第五單元的教學內容,是在學生學習了三角形的概念及特征之后進行的。教材先給出了量這一思路,繼而讓學生探索驗證三角形內角和是180度這一觀點。在活動過程中,先通過“畫一畫、量一量”,產生初步的發(fā)現(xiàn)和猜想,再“拼一拼、折一折”,引導學生對已有猜想進行驗證,經歷提出猜想——進行驗證的的過程,滲透數(shù)學學習方法和思想。
【學生分析】
學生已經掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學生已經在課前通過不同的途徑知道“三角形的內角和是180度”的結論,但不一定清楚道理,所以本課的設計意圖不在于了解,而在于驗證,讓學生在課堂上經歷研究問題的過程是本節(jié)課的重點。四年級的學生已經初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經驗,通過交流、比較、評價尋找解決問題的途徑和策略。
【學習目標】
1.學生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內角和等于180度”的規(guī)律。
2.在探究過程中,經歷知識產生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。
3.體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。
【教學過程】
一、創(chuàng)設情境,發(fā)現(xiàn)問題
1、魔術導入:把長方形的紙剪兩刀,怎樣拼成一個三角形?
2、你知道三角形的那些知識?(復習)
3、小游戲:猜一猜藏在信封后面的是什么三角形。
師:我們在猜三角形的時候,看到一個直角,就能斷定它一定是直角三角形;看到一個鈍角,就能斷定他一定是鈍角三角形;但只看到一個銳角,就判斷不出來是哪種三角形?磥碓谝粋三角形中,只能有一個直角或一個鈍角,為什么畫不出有兩個直角或兩個鈍角的三角形呢?
三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。
(創(chuàng)設的不是生活中的`情境,而是數(shù)學化的情境。有的孩子認為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現(xiàn)出學生在認知上的矛盾,學生用已經學的三角形的特征只能解釋“不能是這樣”,而不能解釋“為什么不能是這樣”。這樣引入問題恰好可以利用學生的這種認知沖突,激發(fā)學生的學習興趣。)
二、引導探究,解決問題
1.介紹內角、內角和
師:我們現(xiàn)在研究三角形的三個角,都是它的內角,以后到了初中,還會接觸三角形的外角。看老師手里的三角形,關于它的三個內角,除了我們已經掌握的知識外,你還知道哪方面的知識?誰能說一說三角形的內角和指的是什么?
已經知道三角形的內角和是多少的同學,可以把它寫在本上。不知道的同學想一想,計量內角和的單位是度,可以估計一下,各種各樣的三角形的內角和是不是一個固定的數(shù),有可能會是多少度,把你的猜想也寫在本上。
我們這節(jié)課就來一起探究用哪些方法能知道三角形的內角和。
2.確定研究范圍(預設約3-5分)
師:研究三角形的內角和,是不是應該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學生反對)
請你想個辦法吧!
。ㄍㄟ^引導學生分析,“研究哪幾類三角形,就能代表所有的三角形”這個問題,來滲透研究問題要全面,也就是完全歸納法的數(shù)學思想)
3.動手操作實踐(預設約8-10分)
同桌組成學習小組,拿出課前制作的各種各樣的三角形,先找到三個內角,把每個角標上序號。老師提出要求:先試著研究自己的三角形,然后再共同研究小組里其他同學的三角形,看看各種三角形內角和是不是一樣的。(學生動手操作試驗,在小組中討論問題)
(為了滿足學生的探究欲望,發(fā)揮學生的主觀能動性,我在設計學具的時候,想了幾個不同的方案,最后決定課前讓學生在學習小組里分工合作制作各種不同的三角形,課上就讓學生就用自己制作的三角形,通過獨立探究和組內交流,實現(xiàn)對多種方法的體驗和感悟。)
4.匯報交流(預設約15-20分)
。1)測量的方法
學生匯報量的方法,師請同學評價這種方法。
師小結:直接量的方法挺好,雖然測量有誤差,不準,但我們能知道,三角形的內角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?
。2)剪拼的方法
學生匯報后師小結:能想到這個方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學生剪一剪、拼一拼)
師:把三角形的三個內角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會產生誤差,有時會差一點點,誰還有別的方法確定三角形的內角和一定是180°?
。3)折拼的方法
學生匯報后師小結:我們要研究三角形的內角和,實際上就是想辦法把三角形的三個內角湊到一起,像剪和折的方法,看三個內角拼到一起是不是180度,都是借助我們學過的平角解決的問題。
這三種方法都不錯,在操作的過程中,有時會有誤差,不太有說服力。想一想,你還能不能借助我們學過的哪種圖形,想辦法說明三角形的內角和一定是180度?
(4)演繹推理的方法
。ń柚鷮W過的長方形,把一個長方形沿對角線分成兩個三角形。)
師:你認為這種方法好不好?我們看看是不是這么回事。
師小結:這種方法避免了在剪拼過程中由于操作出現(xiàn)的誤差,非常準確的說明了三角形的內角和一定是180度。
(學生通過小組合作的方式學到方法,分享經驗,更重要的是領悟到科學研究問題的方法。就學生的發(fā)展而言,探究的過程比探究獲得的結論更有價值。)
學生用的方法會非常多,怎樣對這些方法進行引導,是值得思考的問題。這些方法的思維水平不應該是平行的:直接測量的方法是學生利用已有的知識,測量出每個角的度數(shù),再用加法求和;拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個特殊角,也就是平角來解決問題;而演繹推理,即把兩個完全相同的三角形合二為一,或把長方形一分為二,成為兩個三角形,這是更深層次的思考,是一種批判的思維。前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數(shù)。最后一種方法具有演繹推理的色彩,把一個長方形沿對角線分成兩個完全相同的三角形后,因為兩個三角形的內角和是原來長方形的四個內角之和360度,所以一個三角形的內角和就是360°÷2=180°,這種方法從科學證明的角度闡述了三角形的內角和,它有嚴密性和精確性。基于以上的想法,我覺得在課上不能停留在學生對方法的描述上,而應引導學生經歷從直觀到抽象、思維程度從低到高的過程,感悟數(shù)學的嚴謹性。所以在最后一個環(huán)節(jié)中,教師向全班同學推薦這種分的方法,大家一起來做一做,不要求全體都掌握,就想起到引導和點撥的作用。學生在經歷量和拼之后,逐漸會在思維發(fā)散的過程中得到集中,集中為分的方法,最后將四邊形一分為二,五邊形一分為三,六邊形一分為四……,又會發(fā)現(xiàn)一些新的規(guī)律!
5.驗證猜想
請學生把剛才研究的三角形舉起來,分別是銳角三角形、直角三角形、鈍角三角形,這三類的三角形內角和都是180度,那就可以說,所有的三角形的內角和都是180度。
這個結論和課前剛才知道的或猜的一樣嗎?
。ㄔ诤芏嗤瑢W都知道三角形內角和的情況下,要引導學生領悟有了猜測還要去驗證,這是一種科學的研究問題的方法,是一種求實精神。)
6.解釋課前問題
用內角和的知識解釋課前的問題,為什么在三角形中不能有兩個直角或鈍角。
三、拓展應用,深化創(chuàng)新
1.介紹科學家帕斯卡(出示帕斯卡的資料)
師:帕斯卡為科學作出了巨大的貢獻,在我們以后學習的知識中,也有很多是帕斯卡發(fā)現(xiàn)和驗證的,他12歲就發(fā)現(xiàn)三角形內角和是180度,我們同學還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。
2.四邊形內角和及多邊形內角和(幻燈片)
你打算用哪種方法知道四邊形的內角和?
你覺得哪種方法更好?
。ㄔO計求四邊形的內角和,是把這個新問題轉化歸結為求幾個三角形內角和的問題上,滲透化歸的數(shù)學學習方法。)
3.總結
我們把四邊形一分為二,用三角形內角和的知識知道了四邊形內角和,那么五邊形、六邊形……這些多邊形的內角和是多少度?有沒有什么規(guī)律可循,希望同學們能用學到的知識和方法去探究問題,你還會有一些精彩的發(fā)現(xiàn)。
【三角形內角和教學設計】相關文章:
三角形內角和教學設計02-13
三角形內角和教學設計06-10
《三角形內角和》教學設計05-03
《三角形的內角和》教學設計05-08
(必備)三角形內角和教學設計12-18
三角形內角和教學設計(優(yōu))12-26
《三角形內角和》的教學設計范文02-07
三角形內角和教學設計范文04-13
《三角形內角和》教學設計范文03-01
三角形內角和教學設計(精選15篇)03-09