97超级碰碰碰久久久_精品成年人在线观看_精品国内女人视频免费观_福利一区二区久久

《抽屜原理》最新教學(xué)設(shè)計

時間:2024-04-10 18:40:00 設(shè)計 我要投稿
  • 相關(guān)推薦

《抽屜原理》最新教學(xué)設(shè)計

  在教學(xué)工作者開展教學(xué)活動前,常常要寫一份優(yōu)秀的教學(xué)設(shè)計,教學(xué)設(shè)計是一個系統(tǒng)設(shè)計并實現(xiàn)學(xué)習(xí)目標(biāo)的過程,它遵循學(xué)習(xí)效果最優(yōu)的原則嗎,是課件開發(fā)質(zhì)量高低的關(guān)鍵所在。教學(xué)設(shè)計應(yīng)該怎么寫才好呢?以下是小編為大家整理的《抽屜原理》最新教學(xué)設(shè)計,僅供參考,希望能夠幫助到大家。

《抽屜原理》最新教學(xué)設(shè)計

《抽屜原理》最新教學(xué)設(shè)計1

  教學(xué)目標(biāo):

  1.知識與能力目標(biāo):

  經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。通過猜測、驗證、觀察、分析等數(shù)學(xué)活動,建立數(shù)學(xué)模型,發(fā)現(xiàn)規(guī)律。滲透“建!彼枷搿

  2.過程與方法目標(biāo):

  經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。

  3.情感、態(tài)度與價值觀目標(biāo):

  通過“抽屜原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。

  教學(xué)重點:

  經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  教學(xué)難點:

  理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  教學(xué)準(zhǔn)備:

  教具:5個杯子,6根小棒;學(xué)具:每組5個杯子,6根小棒。

  教學(xué)過程:

 一、游戲激趣,初步體驗。

  師:同學(xué)們,你們玩過撲克牌嗎?下面我們用撲克牌來玩?zhèn)游戲。大家知道一副撲克牌有54張,如果去掉兩張王牌,就剩52張,對嗎?如果從這52張撲克牌中任意抽取5張,我敢肯定地說:“張5張撲克牌至少有2張是同一種花色的,你們信嗎?那就請5位同學(xué)上來各抽一張,我們來驗證一下。如果再請五位同學(xué)來抽,我還敢這樣肯定地說,你們相信嗎?其實這里面蘊(yùn)藏著一個非常有趣的數(shù)學(xué)原理,想不想研究。

  二、操作探究,發(fā)現(xiàn)規(guī)律。

  1.研究小棒數(shù)比杯子數(shù)多1的情況。

  師:今天這節(jié)課我們就用小棒和杯子來研究。

  師:如果把3根小棒放在2個杯子里,該怎樣放?有幾種放法?

  學(xué)生分組操作,并把操作的結(jié)果記錄下來。

  請一個小組匯報操作過程,教師在黑板上記錄。

  師:觀察這所有的擺法,你們發(fā)現(xiàn)總有一個杯子里至少有幾根小棒?板書:總有一個杯子里至少有。

  師:依此推想下去,4根小棒放在3個杯子里,又可以怎樣放?大家再來擺擺看,看看又有什么發(fā)現(xiàn)?

  學(xué)生分組操作,并把操作的結(jié)果記錄下來。

  請一個小組代表匯報操作過程,教師在黑板上記錄。

  師:觀察所有的擺法,你發(fā)現(xiàn)了什么?這里的“總有”是什么意思?“至少”又是什么意思?

  師:那如果把6根小棒放在5個杯子里,猜一猜,會有什么樣的結(jié)果?

  師:怎樣驗證猜測的結(jié)果對不對,你又什么好方法?引導(dǎo)學(xué)生不再一一列舉,用平均分的方法來找答案。并用算式表示分的結(jié)果:6÷5=1……1

  師:那如果用這種方法,你知道把7根小棒放在6個杯子里,把10根小棒放在9個杯子里,把100根小棒放在99個杯子里,會有什么樣的結(jié)果呢?你又從中發(fā)現(xiàn)了什么規(guī)律呢?

  師:我們發(fā)現(xiàn)了小棒的數(shù)量比杯子的數(shù)量多1,總有一個杯子里至少有2根小棒。那如果小棒的數(shù)量比杯子的數(shù)量多2、多3,又會有什么樣的結(jié)果呢?

  2、研究小棒數(shù)比杯子數(shù)多2、多3的情況。

  師:如果把5根小棒放在3個杯子里,會有什么結(jié)果?

  引導(dǎo):先平均分,每個杯子里分得1根小棒,余下的2根小棒又該怎么分呢?

  師:把7根小棒放在3個杯子里,會有什么結(jié)果呢?為什么?

  3、研究小棒數(shù)比杯子數(shù)的2倍多、3倍多…等情況。

  師:如果把9根小棒放在4個杯子里,把15根小棒放在4個杯子里,分別又會有什么結(jié)果?

  小組內(nèi)討論,再請同學(xué)說結(jié)果和理由。

  4、總結(jié)規(guī)律。

  師:我們將小棒看做物體、把杯子看做抽屜,你發(fā)現(xiàn)了什么規(guī)律?

  總結(jié):把m個物體放在n個抽屜里(m﹥n),總有一個抽屜至少有“商+1”個物體。

  5、介紹抽屜原理。

  “抽屜原理”又稱“鴿巢原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的.,所以又稱“狄里克雷原理”,這一原理在解決實際問題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。

  三、應(yīng)用“抽屜原理”,感受數(shù)學(xué)的魅力。

  1、把5本書放進(jìn)2個抽屜中,不管怎么放,總有一個抽屜至少放進(jìn)幾本書?為什么?

  先思考:這里是把什么看做物體?什么看做抽屜?再說結(jié)果和理由。

  2、8只鴿子飛回3個鴿舍,至少有3只鴿子要飛進(jìn)同一個鴿舍里。為什么?

  3、向東小學(xué)六年級共有370名學(xué)生,其中六(2)班有49名學(xué)生。請問下面兩人說的對嗎?為什么?

 。1)六年級里至少有兩人的生日是同一天。

  (2)六(2)班中至少有5人是同一個月出生的。

  4、張叔叔參加飛鏢比賽,投了5鏢,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?

  5、師:開課時我們做的游戲還記得嗎?為什么老師可以肯定地說:從52張牌中任意抽取5張牌,至少會有2張牌是同一花色的?你能用所學(xué)的抽屜原理來解釋嗎?

  四、全課小結(jié)。

  說一說:今天這節(jié)課,我們又學(xué)習(xí)了什么新知識?(師生共同對本節(jié)課的內(nèi)容進(jìn)行小結(jié))

  五、布置作業(yè)。

  課本73頁練習(xí)十二第2、4題。

  六、板書設(shè)計。

  數(shù)學(xué)廣角——抽屜原理

《抽屜原理》最新教學(xué)設(shè)計2

  教學(xué)目標(biāo):

  1.知識與能力目標(biāo):

  經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。通過猜測、驗證、觀察、分析等數(shù)學(xué)活動,建立數(shù)學(xué)模型,發(fā)現(xiàn)規(guī)律。滲透“建!彼枷。

  2.過程與方法目標(biāo):

  經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。

  3.情感、態(tài)度與價值觀目標(biāo):

  通過“抽屜原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。

  教學(xué)重點:

  經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  教學(xué)難點:

  理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  教學(xué)準(zhǔn)備:

  教具:5個杯子,6根小棒;學(xué)具:每組5個杯子,6根小棒。

  教學(xué)過程:

一、游戲激趣,初步體驗。

  師:同學(xué)們,你們玩過撲克牌嗎?下面我們用撲克牌來玩?zhèn)游戲。大家知道一副撲克牌有54張,如果去掉兩張王牌,就剩52張,對嗎?如果從這52張撲克牌中任意抽取5張,我敢肯定地說:“張5張撲克牌至少有2張是同一種花色的,你們信嗎?那就請5位同學(xué)上來各抽一張,我們來驗證一下。如果再請五位同學(xué)來抽,我還敢這樣肯定地說,你們相信嗎?其實這里面蘊(yùn)藏著一個非常有趣的數(shù)學(xué)原理,想不想研究?

  二、操作探究,發(fā)現(xiàn)規(guī)律。

  (一)經(jīng)歷“抽屜原理”的探究過程,理解原理。

  1.研究小棒數(shù)比杯子數(shù)多1的情況。

  師:今天這節(jié)課我們就用小棒和杯子來研究。

  師:如果把3根小棒放在2個杯子里,該怎樣放?有幾種放法?

  學(xué)生分組操作,并把操作的結(jié)果記錄下來。

  請一個小組匯報操作過程,教師在黑板上記錄。

  師:觀察這所有的擺法,你們發(fā)現(xiàn)總有一個杯子里至少有幾根小棒?板書:總有一個杯子里至少有。

  師:依此推想下去,4根小棒放在3個杯子里,又可以怎樣放?大家再來擺擺看,看看又有什么發(fā)現(xiàn)?

  學(xué)生分組操作,并把操作的結(jié)果記錄下來。

  請一個小組代表匯報操作過程,教師在黑板上記錄。

  師:觀察所有的擺法,你發(fā)現(xiàn)了什么?這里的`“總有”是什么意思?“至少”又是什么意思?

  師:那如果把6根小棒放在5個杯子里,猜一猜,會有什么樣的結(jié)果?

  師:怎樣驗證猜測的結(jié)果對不對,你又什么好方法?引導(dǎo)學(xué)生不再一一列舉,用平均分的方法來找答案。并用算式表示分的結(jié)果:6÷5=1……1

  師:那如果用這種方法,你知道把7根小棒放在6個杯子里,把10根小棒放在9個杯子里,把100根小棒放在99個杯子里,會有什么樣的結(jié)果呢?你又從中發(fā)現(xiàn)了什么規(guī)律呢?

  師:我們發(fā)現(xiàn)了小棒的數(shù)量比杯子的數(shù)量多1,總有一個杯子里至少有2根小棒。那如果小棒的數(shù)量比杯子的數(shù)量多2、多3,又會有什么樣的結(jié)果呢?

  2、研究小棒數(shù)比杯子數(shù)多2、多3的情況。

  師:如果把5根小棒放在3個杯子里,會有什么結(jié)果?

  引導(dǎo):先平均分,每個杯子里分得1根小棒,余下的2根小棒又該怎么分呢?

  師:把7根小棒放在3個杯子里,會有什么結(jié)果呢?為什么?

  3、研究小棒數(shù)比杯子數(shù)的2倍多、3倍多…等情況。

  師:如果把9根小棒放在4個杯子里,把15根小棒放在4個杯子里,分別又會有什么結(jié)果?

  小組內(nèi)討論,再請同學(xué)說結(jié)果和理由。

  4、總結(jié)規(guī)律。

  師:我們將小棒看做物體、把杯子看做抽屜,你發(fā)現(xiàn)了什么規(guī)律?

  總結(jié):把m個物體放在n個抽屜里(m﹥n),總有一個抽屜至少有“商+1”個物體。

  5、介紹抽屜原理。

  “抽屜原理”又稱“鴿巢原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,這一原理在解決實際問題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。

  三、應(yīng)用“抽屜原理”,感受數(shù)學(xué)的魅力。

  1、把5本書放進(jìn)2個抽屜中,不管怎么放,總有一個抽屜至少放進(jìn)幾本書?為什么?

  先思考:這里是把什么看做物體?什么看做抽屜?再說結(jié)果和理由。

  2、8只鴿子飛回3個鴿舍,至少有3只鴿子要飛進(jìn)同一個鴿舍里。為什么?

  3、向東小學(xué)六年級共有370名學(xué)生,其中六(2)班有49名學(xué)生。請問下面兩人說的對嗎?為什么?

  (1)六年級里至少有兩人的生日是同一天。

 。2)六(2)班中至少有5人是同一個月出生的。

  4、張叔叔參加飛鏢比賽,投了5鏢,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?

  5、師:開課時我們做的游戲還記得嗎?為什么老師可以肯定地說:從52張牌中任意抽取5張牌,至少會有2張牌是同一花色的?你能用所學(xué)的抽屜原理來解釋嗎?

  四、全課小結(jié)。

  說一說:今天這節(jié)課,我們又學(xué)習(xí)了什么新知識?(師生共同對本節(jié)課的內(nèi)容進(jìn)行小結(jié))

  五、布置作業(yè)。

  課本73頁練習(xí)十二第2、4題。

  六、板書設(shè)計。

  數(shù)學(xué)廣角——抽屜原理

《抽屜原理》最新教學(xué)設(shè)計3

  教學(xué)目標(biāo):

  1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

  2、通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

  3、通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

  教學(xué)重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  教學(xué)難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  教學(xué)過程

  一、 游戲引入

  3個人坐兩個座位,3人都要坐下,一定有一個座位上至少坐了2個人。

  這其中蘊(yùn)含了有趣的數(shù)學(xué)原理,這節(jié)課我們一起學(xué)習(xí)研究。

  二、新知探究

  1、把4枝鉛筆放進(jìn)3個文具盒里,不管怎么放,總有一個文具盒里至少放進(jìn)()枝鉛筆先猜一猜,再動手放一放,看看有哪些不同方法。用自己的方法記錄(4,0,0)(3,1,0)(2,2,0)(2,1,1)你有什么發(fā)現(xiàn)?

  不管怎么放總有一個文具盒里至少放進(jìn)2枝鉛筆。總有是什么意思?至少是什么意思2、思考

  有沒有一種方法不用擺放就可以知道至少數(shù)是多少呢?

  1、3人坐2個位子,總有一個座位上至少坐了2個人2、4枝鉛筆放進(jìn)3個文具盒中,總有一個文具盒中至少放了2枝鉛筆5枝鉛筆放進(jìn)4個文具盒中,6枝鉛筆放進(jìn)5個文具盒中。

  99支鉛筆放進(jìn)98個文具盒中。

  是否都有一個文具盒中

  至少放進(jìn)2枝鉛筆呢?

  這是為什么?可以用算式表達(dá)嗎?

  4、如果是5枝鉛筆放到3個文具盒里,總有一個文具盒至少放進(jìn)幾枝鉛筆?把7支筆放進(jìn)2個文具盒里呢?

  8枝筆放進(jìn)2個文具盒呢?

  9枝筆放進(jìn)3個文具盒呢?至少數(shù)=上+余數(shù)嗎?

  三、小試牛刀

  1、7只鴿子飛回5個鴿舍,至少有幾只鴿子要飛進(jìn)同一個鴿舍里?2、從撲克牌中取出兩張王牌,在剩下的52張中任意抽出5張,至少有幾張是同花色的?四、數(shù)學(xué)小知識

  數(shù)學(xué)小知識:抽屜原理的由來最先發(fā)現(xiàn)這些規(guī)律的人是誰呢?最先是由19世紀(jì)的德國數(shù)學(xué)家狄里克雷運(yùn)用于解決數(shù)學(xué)問題的,后人們?yōu)榱思o(jì)念他從這么平凡的.事情中發(fā)現(xiàn)的規(guī)律,就把這個規(guī)律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鴿巢原理”,還把它叫做“抽屜原理”。五、智慧城堡

  1、把13只小兔子關(guān)在5個籠子里,至少有多少只兔子要關(guān)在同一個籠子里?2、咱們班共59人,至少有幾人是同一屬相?3、張叔叔參加飛鏢比賽,投了5鏢,鏢鏢都中,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?4、六年級四個班的學(xué)生去春游,自由活時有6個同學(xué)在一起,可以肯定。

  為什么?六、小結(jié)

  這節(jié)課你有什么收獲?

  七、作業(yè):課后練習(xí)

《抽屜原理》最新教學(xué)設(shè)計4

  教學(xué)目標(biāo)

  1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

  2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

  3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

  教學(xué)重、難點

  經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  教學(xué)過程

一、問題引入。

  師:同學(xué)們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準(zhǔn)備了3把椅子,請4個同學(xué)上來,誰愿來?

  1.游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。

  2.討論:“不管怎么坐,總有一把椅子上至少坐兩個同學(xué)”這句話說得對嗎?

  游戲開始,讓學(xué)生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學(xué),使學(xué)生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。

  引入:不管怎么坐,總有一把椅子上至少坐兩個同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個原理。

  二、探究新知

 。ㄒ唬┙虒W(xué)例1

  1.出示題目:有4枝鉛筆,3個盒子,把4枝鉛筆放進(jìn)3個盒子里,怎么放?有幾種不同的放法?

  師:請同學(xué)們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。

  板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),問題:4個人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學(xué)。4支筆放進(jìn)3個盒子里呢?

  引導(dǎo)學(xué)生得出:不管怎么放,總有一個盒子里至少有2枝筆。

  問題:

 。1)“總有”是什么意思?(一定有)

 。2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)

  教師引導(dǎo)學(xué)生總結(jié)規(guī)律:我們把4枝筆放進(jìn)3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現(xiàn)了這個結(jié)論。那么,你們能不能找到一種更為直接的`方法得到這個結(jié)論呢?

  學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。

  問題:把6枝筆放進(jìn)5個盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個盒子里呢?把8枝筆放進(jìn)7個盒子里呢?把9枝筆放進(jìn)8個盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)

  總結(jié):只要放的鉛筆數(shù)盒數(shù)多1,總有一個盒里至少放進(jìn)2支。

  2.完成課下“做一做”,學(xué)習(xí)解決問題。

  問題:6只鴿子飛回5個鴿籠,至少有2只鴿子要飛進(jìn)同一個鴿籠里,為什么?

 。1)學(xué)生活動—獨(dú)立思考自主探究

 。2)交流、說理活動。

  引導(dǎo)學(xué)生分析:如果一個鴿籠里飛進(jìn)一只鴿子,最多飛進(jìn)4只鴿子,還剩一只,要飛進(jìn)其中的一個鴿籠里。不管怎么飛,至少有2只鴿子要飛進(jìn)同一個鴿籠里。所以,“至少有2只鴿子飛進(jìn)同一個籠里”的結(jié)論是正確的。

  總結(jié):用平均分的方法,就能說明存在“總有一個鴿籠至少有2只鴿子飛進(jìn)一個個籠里”。

 。ǘ┙虒W(xué)例2

  1.出示題目:把5本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?把7本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?把9本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

 。艚o學(xué)生思考的空間,師巡視了解各種情況)

  2.學(xué)生匯報,教師給予表揚(yáng)后并總結(jié):

  總結(jié)1:把5本書放進(jìn)2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。

  總結(jié)2:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。

  問題:如果把5本書放進(jìn)3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?用“商+2”可以嗎?(學(xué)生討論)

  引導(dǎo)學(xué)生思考:到底是“商+1”還是“商+余數(shù)”呢?誰的結(jié)論對呢?(學(xué)生小組里進(jìn)行研究、討論。)

  總結(jié):用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。

  師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。

  (三)學(xué)生自學(xué)例題3并進(jìn)行自主交流,試著用手中的用具模擬演示場景。

  三、解決問題

  四、全課小結(jié)

《抽屜原理》最新教學(xué)設(shè)計5

  教學(xué)設(shè)計

  1.教材分析

  《抽屜原理》是義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)六年級下冊第五單元數(shù)學(xué)廣角的教學(xué)內(nèi)容。這部分教材通過幾個直觀例子,借助實際操作,向?qū)W生介紹“抽屜原理”,使學(xué)生在理解“抽屜原理”這一數(shù)學(xué)方法的基礎(chǔ)上,對一些簡單的實際問題加以“模型化”,會用“抽屜原理”加以解決。

  2.學(xué)情分析

  “抽屜原理”在生活中運(yùn)用廣泛,學(xué)生在生活中常常能遇到實例,但并不能有意識地從數(shù)學(xué)的角度來理解和運(yùn)用“抽屜原理”。教學(xué)中應(yīng)有意識地讓學(xué)生理解“抽屜原理”的“一般化模型”。六年級學(xué)生的邏輯思維能力、小組合作能力和動手操作能力都有了較大的提高,加上已有的生活經(jīng)驗,很容易感受到用“抽屜原理”解決問題帶來的樂趣。

  3.教學(xué)理念

  激趣是新課導(dǎo)入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學(xué)習(xí)把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容。特別是對教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建!,使復(fù)雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標(biāo)要求。

  教學(xué)目標(biāo)

  1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

  2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

  3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

  教學(xué)重難點

  重點:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  教學(xué)過程

一、課前游戲引入。

  上課前,我們先來熱身一下,一起來玩搶椅子的游戲。

  這有4把椅子,請5位同學(xué)上來參加游戲,游戲規(guī)則是:在老師說開始時,5位同學(xué)繞著椅子走,當(dāng)老師說停的,5位同學(xué)都要坐在椅子上。

  為什么總有一張椅子至少坐兩個同學(xué)?

  在這個游戲中蘊(yùn)含著一個有趣的數(shù)學(xué)原理叫做抽屜理原,這節(jié)課我們就一起來研究抽屜理原。(板書課題)

  二、通過操作,探究新知

  (一)探究物體數(shù)比抽屜數(shù)多1的情況

  1、把3根小棒放進(jìn)2個杯子中,有幾種不同的放法?(1)同桌合作,想一想,擺一擺,并記錄下來。

  (2)反饋:兩種放法:(3,0)和(2,1)。

  (3)從兩種放法,同學(xué)們會有什么發(fā)現(xiàn)呢?(總有一個杯子中至少放進(jìn)2根小棒)你是怎么發(fā)現(xiàn)的?

 。4)“總有”什么意思?(一定有)

 。5)“至少”有2根什么意思?(不少于2根)

  小結(jié):把3根小棒放進(jìn)2個杯子中,不管怎么放,總有一個杯子中至少放進(jìn)了2根小棒。

  2、要把4根小棒放進(jìn)3個杯子里,有幾種放法?

 。1)請同學(xué)們動手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。

  (2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

 。3)從四種放法,同學(xué)們會有什么發(fā)現(xiàn)呢?(總有一個杯子里至少有2根小棒)

  (4)你是怎么發(fā)現(xiàn)的?

  (5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個杯子里放進(jìn)了2根小棒”。

  3、類推:把6根小棒放入5個杯子中,總有一個杯子中至少有幾根小棒,為什么?

  還用不用把所有的擺法再一一列舉出來,有什么方法只擺一次就能證明這個結(jié)論。(平均分)

  為什么用平均分的方法就能證明這個結(jié)論?余下的。小棒怎么分?

  怎樣用算式表示?(6÷5=11,商1表示什么,余1又表示什么?)把7枝鉛筆放進(jìn)6個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?

  把100枝鉛筆放進(jìn)99個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?

  4、從剛才我們的探究活動中,你有什么發(fā)現(xiàn)?(當(dāng)物體數(shù)比抽屜數(shù)多1,就總有一個抽屜中至少放進(jìn)了2個物體。)

  7、在我們的生活中,常常會遇到抽屜原理,你能不能舉個例子?在課前我們玩的游戲中,有沒有抽屜原理?

  過渡:同學(xué)們非常了不起,善于運(yùn)用觀察、分析、思考、推理、證明的方法研究問題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們再來研究這樣一組問題。

  (二)探究物體數(shù)比抽屜數(shù)多幾倍還多的情況

  1、研究把5根小棒放進(jìn)3個杯子

 。1)把5根小棒放進(jìn)3個杯子,總有一個杯子中至少有幾根小棒?

 。2)可以怎樣分,用平均分的方法證明一下。先在每個抽屜里放進(jìn)2本,剩下的1本放進(jìn)任何一個抽屜,這個抽屜就有3本書了。

 。4)可以把我們的想法用算式表示出來:5÷3=1…2(商1表示什么,余數(shù)2表示什么)2+1=3表示什么?

  2、類推:如果把9根小棒放進(jìn)4個杯子中,15根小棒也放進(jìn)4個杯子中,會有什么結(jié)論?

  3、怎樣求至少數(shù)?(商+1)

  3、小結(jié):當(dāng)物體數(shù)比抽屜數(shù)多幾倍還多的情況,用物體數(shù)除以抽屜數(shù),有余數(shù)時,至少數(shù)=商+1.

  4、經(jīng)過剛才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,個個都是了不起的數(shù)學(xué)家。 “抽屜原理”最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的`應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。

  5、做一做:

  (1)8只鴿子飛回3個鴿舍,至少有3只鴿子要飛時同一個鴿舍里。為什么?

 。ㄏ茸寣W(xué)生獨(dú)立思考,在小組里討論,再全班反饋)

 。2)11個小朋友同行,其中至少有幾個小朋友性別相同?

 。3)從電影院任意找來15個觀眾,至少有幾個人屬相相同?

 。ㄕ业筋}中什么當(dāng)抽屜,物體數(shù)是多少,運(yùn)用抽屜原理列出算式,并解釋原因)

  三、遷移與拓展

  1、下面我們一起來放松一下,做個小游戲。

  我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?

  2、用三種顏色給正方體的各面涂色(每面只涂一種顏色),請你證明至少有兩個面涂

  色相同。

  得出結(jié)論:當(dāng)物體數(shù)除以抽屜數(shù),整除時,至少數(shù)=商

  四、總結(jié)全課這節(jié)課,你有什么收獲?

  教學(xué)反思

  新一輪的課程改革,把原本在奧數(shù)教材中出現(xiàn)的一些開發(fā)智力、開闊視野的數(shù)學(xué)思維訓(xùn)練內(nèi)容也加入到數(shù)學(xué)教材中,以“數(shù)學(xué)廣角”單元的形式出現(xiàn)!俺閷显怼笔橇昙壪聝詢(nèi)容,應(yīng)用很廣泛且靈活多變,可以解決一些看上去很復(fù)雜、覺得無從下手,卻又是相當(dāng)有趣的數(shù)學(xué)問題。但對于小學(xué)生來說,理解和掌握“抽屜原理”還存在著一定的難度。這對我們數(shù)學(xué)教師的教學(xué)提出了挑戰(zhàn)。通過課堂實踐,感受頗深,反思我的教學(xué)過程,有幾下幾點可取之處:

  1、創(chuàng)設(shè)情境,從學(xué)生熟悉的素材開始激發(fā)興趣,興趣是最好的老師。課前“搶凳子”游戲,簡單卻能真實的反映“抽屜原理”的本質(zhì)。通過猜測,一下就抓住學(xué)生的注意力,讓學(xué)生覺得這節(jié)課要探究的問題,好玩又有意義。

  2、建立模型,本節(jié)課充分放手,讓學(xué)生自主思考,恰當(dāng)引導(dǎo)

  教師是學(xué)生的合作者,引導(dǎo)者。在活動設(shè)計中,我注重學(xué)生經(jīng)歷知識產(chǎn)生、形成的過程。4根小棒放進(jìn)3個杯子的結(jié)果早就可想而知,但讓學(xué)生通過放一放、想一想、議一議的過程,把抽象的說理用具體的實物演示出來,化抽象為具體,發(fā)現(xiàn)并描述、理解了最簡單的“抽屜原理”。在此基礎(chǔ)上,我又主動提問:還有什么有價值的問題研究嗎?讓學(xué)生自主的想到:小棒數(shù)比杯子數(shù)多2或其它數(shù)會怎么樣?來繼續(xù)開展探究活動,同時,通過活動結(jié)合板書引導(dǎo)學(xué)生歸納出求至少數(shù)的方法。

  3、解釋應(yīng)用,深化知識。

  學(xué)了“抽屜原理”有什么用?能解決生活中的什么問題,這就要求在教學(xué)中要注重聯(lián)系學(xué)生的生活實際。在試一試環(huán)節(jié)里,我設(shè)計了一組簡單、真實的生活情境,讓學(xué)生用學(xué)過的知識來解釋這些現(xiàn)象,有效的將學(xué)生的自主探究學(xué)習(xí)延伸到課外,體現(xiàn)了“數(shù)學(xué)來源于生活,又還原于生活”的理念。

  教學(xué)永遠(yuǎn)是一門遺憾的藝術(shù);仡櫿(jié)課我覺得還有許多不足之處,學(xué)生對至少數(shù)的理解還很模糊,只是按照程式推導(dǎo)出至少數(shù)的求法,并沒有真正體會出抽屜原理的本質(zhì)。沒有給學(xué)生足夠思考的空間,只是有部分學(xué)生說出就給出結(jié)論,面向的應(yīng)是全體學(xué)生,這是在我教學(xué)過程中還應(yīng)加強(qiáng)的部分。

【《抽屜原理》最新教學(xué)設(shè)計】相關(guān)文章:

《抽屜原理》教學(xué)設(shè)計02-22

抽屜原理教學(xué)設(shè)計02-01

抽屜原理教學(xué)設(shè)計12-14

抽屜原理教學(xué)設(shè)計03-28

抽屜原理優(yōu)秀教學(xué)設(shè)計03-05

《抽屜原理》教學(xué)設(shè)計優(yōu)秀12-12

《抽屜原理》教學(xué)設(shè)計優(yōu)秀【經(jīng)典】02-10

《抽屜原理》教學(xué)設(shè)計14篇03-05

《抽屜原理》教學(xué)設(shè)計(14篇)03-05

《抽屜原理》教學(xué)設(shè)計15篇02-22