97超级碰碰碰久久久_精品成年人在线观看_精品国内女人视频免费观_福利一区二区久久

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-08-30 17:03:34 總結(jié)范文 我要投稿

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  總結(jié)是對(duì)過(guò)去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評(píng)價(jià)的書(shū)面材料,它可以明確下一步的工作方向,少走彎路,少犯錯(cuò)誤,提高工作效益,我想我們需要寫(xiě)一份總結(jié)了吧。那么我們?cè)撛趺慈?xiě)總結(jié)呢?下面是小編為大家收集的高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來(lái)看看吧。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  第1章空間幾何體1

  1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征1.2空間幾何體的三視圖和直觀圖

  11三視圖:

  正視圖:從前往后側(cè)視圖:從左往右俯視圖:從上往下22畫(huà)三視圖的原則:

  長(zhǎng)對(duì)齊、高對(duì)齊、寬相等

  33直觀圖:斜二測(cè)畫(huà)法44斜二測(cè)畫(huà)法的步驟:

 。1).平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;

  (2).平行于y軸的線長(zhǎng)度變半,平行于x,z軸的線長(zhǎng)度不變;(3).畫(huà)法要寫(xiě)好。

  5用斜二測(cè)畫(huà)法畫(huà)出長(zhǎng)方體的步驟:(1)畫(huà)軸(2)畫(huà)底面(3)畫(huà)側(cè)棱(4)成圖

  1.3空間幾何體的表面積與體積(一)空間幾何體的表面積

  1棱柱、棱錐的表面積:各個(gè)面面積之和

  2圓柱的表面積S2rl2r23圓錐的表面積Srlr2

  4圓臺(tái)的表面積Srlr2RlR2

  5球的表面積S4R2

 。ǘ┛臻g幾何體的體積1柱體的體積VS底h2錐體的體積V13S底h

  3臺(tái)體的體積V13(S上S上S下S下)h4球體的體積V43R3

  第二章直線與平面的位置關(guān)系

  2.1空間點(diǎn)、直線、平面之間的位置關(guān)系

  2.1.1

  1平面含義:平面是無(wú)限延展的2平面的畫(huà)法及表示

 。1)平面的畫(huà)法:水平放置的平面通常畫(huà)成

  一個(gè)平行四邊形,銳角畫(huà)成450,且橫邊畫(huà)成

  DC鄰邊的2倍長(zhǎng)(如圖)α(2)平面通常用希臘字母α、β、γ等表示,AB如平面α、平面β等,也可以用表示平面的平

  行四邊形的四個(gè)頂點(diǎn)或者相對(duì)的兩個(gè)頂點(diǎn)的大寫(xiě)字母來(lái)表示,如平面

  AC、平面ABCD等。3三個(gè)公理:

 。1)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)符號(hào)表示為

  A∈L

  AB∈L=>LααLA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)

  AB(2)公理2:過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面。C符號(hào)表示為:A、B、C三點(diǎn)不共線=>有且只有一個(gè)平面αα,

  使A∈α、B∈α、C∈α。

  公理2作用:確定一個(gè)平面的依據(jù)。

 。3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線。β符號(hào)表示為:P∈α∩β=>α∩β=L,且P∈L

  Pα公理3作用:判定兩個(gè)平面是否相交的依據(jù)L

  2.1.2空間中直線與直線之間的位置關(guān)系

  1空間的兩條直線有如下三種關(guān)系:

  相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);共面直線

  平行直線:同一平面內(nèi),沒(méi)有公共點(diǎn);

  異面直線:不同在任何一個(gè)平面內(nèi),沒(méi)有公共點(diǎn)。2公理4:平行于同一條直線的兩條直線互相平行。符號(hào)表示為:設(shè)a、b、c是三條直線

  a∥b=>a∥cc∥b

  強(qiáng)調(diào):公理4實(shí)質(zhì)上是說(shuō)平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都

  -2-

  適用。

  公理4作用:判斷空間兩條直線平行的依據(jù)。

  3等角定理:空間中如果兩個(gè)角的'兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)4注意點(diǎn):

 、賏"與b"所成的角的大小只由a、b的相互位置來(lái)確定,與O的選擇無(wú)關(guān),為了簡(jiǎn)便,點(diǎn)O一般取在兩直線中的一條上;②兩條異面直線所成的角θ∈(0,);2③當(dāng)兩條異面直線所成的角是直角時(shí),我們就說(shuō)這兩條異面直線互相垂直,記作a⊥b;

 、軆蓷l直線互相垂直,有共面垂直與異面垂直兩種情形;

 、萦(jì)算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。

  2.1.32.1.4空間中直線與平面、平面與平面之間的位置關(guān)系1、直線與平面有三種位置關(guān)系:

  (1)直線在平面內(nèi)有無(wú)數(shù)個(gè)公共點(diǎn)

 。2)直線與平面相交有且只有一個(gè)公共點(diǎn)(3)直線在平面平行沒(méi)有公共點(diǎn)

  指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來(lái)表示

  aαa∩α=Aa∥α

  2.2.直線、平面平行的判定及其性質(zhì)

  2.2.1直線與平面平行的判定

  1、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。簡(jiǎn)記為:線線平行,則線面平行。符號(hào)表示:

  aα

  bβ=>a∥αa∥b

  2.2.2平面與平面平行的判定

  1、兩個(gè)平面平行的判定定理:一個(gè)平面內(nèi)的兩條交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。

  符號(hào)表示:

  aβbβa∩b=Pβ∥αa∥αb∥α2、判斷兩平面平行的方法有三種:(1)用定義;(2)判定定理;

 。3)垂直于同一條直線的兩個(gè)平面平行。

  2.2.32.2.4直線與平面、平面與平面平行的性質(zhì)

  1、定理:一條直線與一個(gè)平面平行,則過(guò)這條直線的任一平面與此平面的交線與該直線平行。簡(jiǎn)記為:線面平行則線線平行。符號(hào)表示:

  a∥α

  aβa∥b

  -3-

  α∩β=b

  作用:利用該定理可解決直線間的平行問(wèn)題。

  2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。符號(hào)表示:

  α∥β

  α∩γ=aa∥bβ∩γ=b

  作用:可以由平面與平面平行得出直線與直線平行

  2.3直線、平面垂直的判定及其性質(zhì)

  2.3.1直線與平面垂直的判定1、定義

  如果直線L與平面α內(nèi)的任意一條直線都垂直,我們就說(shuō)直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。如圖,直線與平面垂直時(shí),它們唯一公共點(diǎn)P叫做垂足。

  Lpα

  2、判定定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。

  注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;

  b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。

  2.3.2平面與平面垂直的判定

  1、二面角的概念:表示從空間一直線出發(fā)的兩個(gè)半平面所組成的圖

  形A

  梭lβ

  Bα

  2、二面角的記法:二面角α-l-β或α-AB-β

  3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直。

  2.3.32.3.4直線與平面、平面與平面垂直的性質(zhì)

  1、定理:垂直于同一個(gè)平面的兩條直線平行。

  2性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。

  本章知識(shí)結(jié)構(gòu)框圖

  -4-

  直線與直線的位置關(guān)系

  直線與平面的位置關(guān)系平面與平面的位置第三章直線與方程

  3.1直線的傾斜角和斜率

  3.1傾斜角和斜率

  1、直線的傾斜角的概念:當(dāng)直線l與x軸相交時(shí),取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí),規(guī)定α=0°.2、傾斜角α的取值范圍:0°≤α<180°.

  當(dāng)直線l與x軸垂直時(shí),α=90°.

  3、直線的斜率:

  一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫(xiě)字母k表示,也就是k=tanα

  ⑴當(dāng)直線l與x軸平行或重合時(shí),α=0°,k=tan0°=0;⑵當(dāng)直線l與x軸垂直時(shí),α=90°,k不存在.由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在.4、直線的斜率公式:

  給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1≠x2,用兩點(diǎn)的坐標(biāo)來(lái)表示直線P1P2的斜率:

  平面(公理1、公理2、公理3、公理4)空間直線、平面的位置關(guān)系斜率公式:

  3.1.2兩條直線的平行與垂直

  1、兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即

  2、直線的截距式方程:已知直線l與x軸的交點(diǎn)為A(a,0),與y軸的交點(diǎn)為B(0,b),其中a0,b0

  注意:上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立.即如果k1=k2,那么一定有L1∥L2

  2、兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負(fù)倒數(shù);反之,如果它們的斜率互為負(fù)倒數(shù),那么它們互相垂直,即

  3.2.1直線的點(diǎn)斜式方程

  1、直線的點(diǎn)斜式方程:直線l經(jīng)過(guò)點(diǎn)P0(x0,y0),且斜率為k

  yy0k(xx0)

  2、、直線的斜截式方程:已知直線l的斜率為k,且與y軸的交點(diǎn)為

  (0,b)

  ykxb

  3.2.2直線的兩點(diǎn)式方程

  1、直線的兩點(diǎn)式方程:已知兩點(diǎn)P1(x1,x2),P2(x2,y2)其中

  (x1x2,y1y2)

  yy1xx1

  y2y1x(x1x2,y1y2)

  2x13.2.3直線的一般式方程

  1、直線的一般式方程:關(guān)于x,y的二元一次方程AxByC0(A,B不同時(shí)為0)

  2、各種直線方程之間的互化。

  3.3直線的交點(diǎn)坐標(biāo)與距離公式

  3.3.1兩直線的交點(diǎn)坐標(biāo)

  1、給出例題:兩直線交點(diǎn)坐標(biāo)

  L1:3x+4y-2=0

  L1:2x+y+2=0

  解:解方程組3x4y202x2y20

  得x=-2,y=2

  所以L1與L2的交點(diǎn)坐標(biāo)為M(-2,2)

  3.3.2兩點(diǎn)間距離兩點(diǎn)間的距離公式

  P1P2x2x22y2y12

  3.3.3點(diǎn)到直線的距離公式1.點(diǎn)到直線距離公式:

  點(diǎn)P(xAx0By0C0,y0)到直線l:AxByC0的距離為:dA2B2

  2、兩平行線間的距離公式:

  已知兩條平行線直線l1和l2的一般式方程為l1:

  AxByC10,

  l2:AxByC20,則l1與lC22的距離為dC1

  A2B2

  第四章

  圓與方程

  4.1.1圓的標(biāo)準(zhǔn)方程

  1、圓的標(biāo)準(zhǔn)方程:(xa)2(yb)2r2

  圓心為A(a,b),半徑為r的圓的方程

  2、點(diǎn)M(x220,y0)與圓(xa)(yb)r2的關(guān)系的判斷方法:

 。1)(x0a)2(y0b)2>r2,點(diǎn)在圓外

 。2)(x220a)(y0b)=r2,點(diǎn)在圓上(3)(x0a)2(y0b)2點(diǎn):

 。1)當(dāng)lr1r2時(shí),圓C1與圓C2相離;(2)當(dāng)lr1r2時(shí),圓C1與圓C2外切;

 。3)當(dāng)|r1r2|lr1r2時(shí),圓C1與圓C2相交;

 。4)當(dāng)l|r1r2|時(shí),圓C1與圓C2內(nèi)切;(5)當(dāng)l|r1r2|時(shí),圓C1與圓C2內(nèi)含;

  4.2.3直線與圓的方程的應(yīng)用

  1、利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;2、過(guò)程與方法

  用坐標(biāo)法解決幾何問(wèn)題的步驟:

  第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問(wèn)題中的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題;

  第二步:通過(guò)代數(shù)運(yùn)算,解決代數(shù)問(wèn)題;第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論.4.3.1空間直角坐標(biāo)系

  RMOQyPM"x

  1、點(diǎn)M對(duì)應(yīng)著唯一確定的有序?qū)崝?shù)組(x,y,z),x、y、z分別是P、Q、R在x、y、z軸上的坐標(biāo)

  2、有序?qū)崝?shù)組(x,y,z),對(duì)應(yīng)著空間直角坐標(biāo)系中的一點(diǎn)

  3、空間中任意點(diǎn)M的坐標(biāo)都可以用有序?qū)崝?shù)組(x,y,z)來(lái)表示,該數(shù)組叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記M(x,y,z),x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),z叫做點(diǎn)M的豎坐標(biāo)。4.3.2空間兩點(diǎn)間的距離公式

  1、空間中任意一點(diǎn)P1(x1,y1,z1)到點(diǎn)P2(x2,y2,z2)之間的距離公式

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  ●不等式

  1、不等式你會(huì)解么?你會(huì)解么?如果是寫(xiě)解集不要忘記寫(xiě)成集合形式!

  2、的解集是(1,3),那么的解集是什么?

  3、兩類恒成立問(wèn)題圖象法——恒成立,則=?

  ★★★★分離變量法——在[1,3]恒成立,則=?(必考題)

  4、線性規(guī)劃問(wèn)題

 。1)可行域怎么作(一定要用直尺和鉛筆)定界——定域——邊界

 。2)目標(biāo)函數(shù)改寫(xiě):(注意分析截距與z的關(guān)系)

  (3)平行直線系去畫(huà)

  5、基本不等式的形式和變形形式

  如a,b為正數(shù),a,b滿足,則ab的范圍是

  6、運(yùn)用基本不等式求最值要注意:一正二定三相等!

  如的最小值是的.最小值(不要忘記交代是什么時(shí)候取到=!。

  一個(gè)非常重要的函數(shù)——對(duì)勾函數(shù)的圖象是什么?

  運(yùn)用對(duì)勾函數(shù)來(lái)處理下面問(wèn)題的最小值是

  7、★★兩種題型:

  和——倒數(shù)和(1的代換),如x,y為正數(shù),且,求的最小值?

  和——積(直接用基本不等式),如x,y為正數(shù),,則的范圍是?

  不要忘記x,xy,x2+y2這三者的關(guān)系!如x,y為正數(shù),,則的范圍是?

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  利用暑假提高成績(jī)30-80分的秘訣:高一視頻,高二視頻,高三視頻

  年級(jí)高一課程推薦高二課程推薦高三課程推薦課程初升高新學(xué)期銜接視頻高一全科強(qiáng)化視頻新高二新學(xué)期雙重強(qiáng)化視頻高二全科強(qiáng)化視頻高考分輪次復(fù)習(xí)全科套餐高三全科強(qiáng)化視頻更多高中輔導(dǎo)課程推薦,點(diǎn)擊進(jìn)入>>高二數(shù)學(xué)期末復(fù)習(xí)知識(shí)點(diǎn)總結(jié)一、直線與圓:

  1、直線的傾斜角的范圍是

  在平面直角坐標(biāo)系中,對(duì)于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針?lè)较蜣D(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時(shí),規(guī)定傾斜角為0;兩條平行線與的距離是

  2、圓的標(biāo)準(zhǔn)方程:.⑵圓的一般方程:注意能將標(biāo)準(zhǔn)方程化為一般方程

  3、過(guò)圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

  4、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

  過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。5、點(diǎn)到直線的距離公式;

  6、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長(zhǎng)問(wèn)題.①相離②相切③相交7、直線方程:⑴點(diǎn)斜式:直線過(guò)點(diǎn)斜率為,則直線方程為,⑵斜截式:直線在軸上的截距為和斜率,則直線方程為8、,,①∥,;②.直線與直線的位置關(guān)系:

 。1)平行A1/A2=B1/B2注意檢驗(yàn)(2)垂直A1A2+B1B2=0

  9、解決直線與圓的'關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長(zhǎng)二、圓錐曲線方程:

  1、橢圓:①方程(a>b>0)注意還有一個(gè);②定義:|PF1|+|PF2|=2a>2c;③e=④長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c;a2=b2+c2;

  2、拋物線:①方程y2=2px注意還有三個(gè),能區(qū)別開(kāi)口方向;②定義:|PF|=d焦點(diǎn)F(,0),準(zhǔn)線x=-;③焦半徑;焦點(diǎn)弦=x1+x2+p;

  3、雙曲線:①方程(a,b>0)注意還有一個(gè);②定義:||PF1|-|PF2||=2a⑵直線與平面所成的角:直線與射影所成的角3、斜二測(cè)畫(huà)法應(yīng)注意的地方:

 。ǎ保┰谝阎獔D形中取互相垂直的軸Ox、Oy。畫(huà)直觀圖時(shí),把它畫(huà)成對(duì)應(yīng)軸o"x"、o"y"、使∠x(chóng)"o"y"=45°(或135°);(2)平行于x軸的線段長(zhǎng)不變,平行于y軸的線段長(zhǎng)減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)

 。1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。(2)平面與平面平行:①線面平行面面平行。

  (3)垂直問(wèn)題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

  5、表(側(cè))面積與體積公式:

 、胖w:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:⑶臺(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=⑷球體:①表面積:S=;②體積:V=

  四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問(wèn)題、曲線切線問(wèn)題)1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.2.常見(jiàn)函數(shù)的導(dǎo)數(shù)公式:①;②;③;⑤;⑥;⑦;⑧。3.導(dǎo)數(shù)的四則運(yùn)算法則:

  4.導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率

  ①k=f/(x0)表示過(guò)曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。5.導(dǎo)數(shù)的應(yīng)用:(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

  注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。(2)求極值的步驟:①求導(dǎo)數(shù);②求方程的根;

 、哿斜恚簷z驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;(3)求可導(dǎo)函數(shù)最大值與最小值的步驟:

  求的根;把根與區(qū)間端點(diǎn)函數(shù)值比較,最大的為最大值,最小的是最小值。五、常用邏輯用語(yǔ):

  1、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.2、四種命題:

 、旁}:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉(zhuǎn)化。3、充要條件

  由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。4、邏輯聯(lián)結(jié)詞:

 、徘(and):命題形式pq;pqpqpqp⑵或(or):命題形式pq;真真真真假⑶非(not):命題形式p.真假假真假假真假真真假假假假真

  “或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”5、全稱命題與特稱命題:

  短語(yǔ)“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號(hào)表示。含有全體量詞的命題,叫做全稱命題。

  短語(yǔ)“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號(hào)表示,含有存在量詞的命題,叫做存在性命題。全稱命題p:;全稱命題p的否定p:。特稱命題p:;特稱命題p的否定p:

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  排列組合

  排列P------和順序有關(guān)

  組合C-------不牽涉到順序的問(wèn)題

  排列分順序,組合不分

  例如把5本不同的書(shū)分給3個(gè)人,有幾種分法."排列"

  把5本書(shū)分給3個(gè)人,有幾種分法"組合"

  1.排列及計(jì)算公式

  從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),用符號(hào)p(n,m)表示.

  p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1).

  2.組合及計(jì)算公式

  從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù).用符號(hào)

  c(n,m)表示.

  c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);

  3.其他排列與組合公式

  從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.

  n個(gè)元素被分成k類,每類的個(gè)數(shù)分別是n1,n2,...nk這n個(gè)元素的全排列數(shù)為

  n!/(n1!_2!_.._k!).

  k類元素,每類的`個(gè)數(shù)無(wú)限,從中取出m個(gè)元素的組合數(shù)為c(m+k-1,m).

  排列(Pnm(n為下標(biāo),m為上標(biāo)))

  Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號(hào));Pnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n

  組合(Cnm(n為下標(biāo),m為上標(biāo)))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=1;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m

  20xx-07-0813:30

  公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!-階乘,如9!=9________

  從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n_n-1)_n-2)..(n-r+1);

  因?yàn)閺膎到(n-r+1)個(gè)數(shù)為n-(n-r+1)=r

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  一、隨機(jī)事件

  主要掌握好(三四五)

  (1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。

 。2)四種運(yùn)算律:交換律、結(jié)合律、分配律、德莫根律。

  (3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對(duì)立、相互獨(dú)立。

  二、概率定義

 。1)統(tǒng)計(jì)定義:頻率穩(wěn)定在一個(gè)數(shù)附近,這個(gè)數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個(gè)基本事件,每個(gè)基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個(gè)數(shù)與樣本空間所含基本事件個(gè)數(shù)的比稱為事件的古典概率;

 。3)幾何概率:樣本空間中的元素有無(wú)窮多個(gè),每個(gè)元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個(gè)幾何圖形,事件A看成這個(gè)圖形的子集,它的概率通過(guò)子集圖形的大小與樣本空間圖形的`大小的比來(lái)計(jì)算;

 。4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。

  三、概率性質(zhì)與公式

  (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

 。2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);

 。3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);

 。4)全概率公式:P(B)=∑P(Ai)P(B|Ai)。它是由因求果,貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;

  如果一個(gè)事件B可以在多種情形(原因)A1,A2,。.。.,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式。

 。5)二項(xiàng)概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,。.。.,n.當(dāng)一個(gè)問(wèn)題可以看成n重貝努力試驗(yàn)(三個(gè)條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時(shí),要考慮二項(xiàng)概率公式。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  等差數(shù)列

  對(duì)于一個(gè)數(shù)列{an},如果任意相鄰兩項(xiàng)之差為一個(gè)常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為Sn。

  那么,通項(xiàng)公式為,其求法很重要,利用了“疊加原理”的思想:

  將以上n—1個(gè)式子相加,便會(huì)接連消去很多相關(guān)的項(xiàng),最終等式左邊余下an,而右邊則余下a1和n—1個(gè)d,如此便得到上述通項(xiàng)公式。

  此外,數(shù)列前n項(xiàng)的和,其具體推導(dǎo)方式較簡(jiǎn)單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再?gòu)?fù)述。

  值得說(shuō)明的是,前n項(xiàng)的和Sn除以n后,便得到一個(gè)以a1為首項(xiàng),以d/2為公差的新數(shù)列,利用這一特點(diǎn)可以使很多涉及Sn的數(shù)列問(wèn)題迎刃而解。

  等比數(shù)列

  對(duì)于一個(gè)數(shù)列{an},如果任意相鄰兩項(xiàng)之商(即二者的比)為一個(gè)常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為T(mén)n。

  那么,通項(xiàng)公式為(即a1乘以q的(n—1)次方,其推導(dǎo)為“連乘原理”的.思想:

  a2=a1Xq,

  a3=a2Xq,

  a4=a3Xq,

  ````````

  an=an—1Xq,

  將以上(n—1)項(xiàng)相乘,左右消去相應(yīng)項(xiàng)后,左邊余下an,右邊余下a1和(n—1)個(gè)q的乘積,也即得到了所述通項(xiàng)公式。

  此外,當(dāng)q=1時(shí)該數(shù)列的前n項(xiàng)和Tn=a1Xn

  當(dāng)q≠1時(shí)該數(shù)列前n項(xiàng)的和Tn=a1X(1—q^(n))/(1—q)。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  1、學(xué)會(huì)三視圖的分析:

  2、斜二測(cè)畫(huà)法應(yīng)注意的地方:

 。1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀圖時(shí),把它畫(huà)成對(duì)應(yīng)軸o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135°);(2)平行于x軸的線段長(zhǎng)不變,平行于y軸的線段長(zhǎng)減半。(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度。

  3、表(側(cè))面積與體積公式:

  ⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

 、棋F體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

  ⑶臺(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

 、惹蝮w:①表面積:S=;②體積:V=

  4、位置關(guān)系的證明(主要方法):注意立體幾何證明的`書(shū)寫(xiě)

 。1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

  (2)平面與平面平行:①線面平行面面平行。

 。3)垂直問(wèn)題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

  5、求角:(步驟———————Ⅰ。找或作角;Ⅱ。求角)

 、女惷嬷本所成角的求法:平移法:平移直線,構(gòu)造三角形;

  ⑵直線與平面所成的角:直線與射影所成的角

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  一、直線與方程

 。1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

 。2)直線的斜率

 、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。

  當(dāng) 時(shí), ; 當(dāng) 時(shí), ; 當(dāng) 時(shí), 不存在。

 、谶^(guò)兩點(diǎn)的直線的斜率公式:

  注意下面四點(diǎn):(1)當(dāng) 時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

 。3)直線方程

 、冱c(diǎn)斜式: 直線斜率k,且過(guò)點(diǎn)

  注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。

  當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

 、谛苯厥剑 ,直線斜率為k,直線在y軸上的截距為b

 、蹆牲c(diǎn)式: ( )直線兩點(diǎn) ,

 、芙鼐厥剑

  其中直線 與 軸交于點(diǎn) ,與 軸交于點(diǎn) ,即 與 軸、 軸的截距分別為 。

 、菀话闶剑 (A,B不全為0)

  注意:各式的適用范圍 特殊的方程如:

  平行于x軸的直線: (b為常數(shù)); 平行于y軸的直線: (a為常數(shù));

 。5)直線系方程:即具有某一共同性質(zhì)的直線

 。ㄒ唬┢叫兄本系

  平行于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))

  (二)垂直直線系

  垂直于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))

 。ㄈ┻^(guò)定點(diǎn)的直線系

 。á。┬甭蕿閗的直線系: ,直線過(guò)定點(diǎn) ;

 。áⅲ┻^(guò)兩條直線 , 的交點(diǎn)的直線系方程為

 。 為參數(shù)),其中直線 不在直線系中。

 。6)兩直線平行與垂直

  當(dāng) , 時(shí),;

  注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。

 。7)兩條直線的交點(diǎn)

  相交

  交點(diǎn)坐標(biāo)即方程組 的一組解。

  方程組無(wú)解 ; 方程組有無(wú)數(shù)解 與 重合

 。8)兩點(diǎn)間距離公式:設(shè) 是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),

  則

 。9)點(diǎn)到直線距離公式:一點(diǎn) 到直線 的距離

 。10)兩平行直線距離公式

  在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。

  二、圓的方程

  1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

  2、圓的方程

  (1)標(biāo)準(zhǔn)方程 ,圓心 ,半徑為r;

 。2)一般方程

  當(dāng) 時(shí),方程表示圓,此時(shí)圓心為 ,半徑為

  當(dāng) 時(shí),表示一個(gè)點(diǎn); 當(dāng) 時(shí),方程不表示任何圖形。

 。3)求圓方程的方法:

  一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。

  3、直線與圓的位置關(guān)系:

  直線與圓的位置關(guān)系有相離,相切,相交三種情況:

 。1)設(shè)直線 ,圓 ,圓心 到l的'距離為 ,則有 ; ;

 。2)過(guò)圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

  (3)過(guò)圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2

  4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

  設(shè)圓 ,

  兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

  當(dāng) 時(shí)兩圓外離,此時(shí)有公切線四條;

  當(dāng) 時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

  當(dāng) 時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當(dāng) 時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;

  當(dāng) 時(shí),兩圓內(nèi)含; 當(dāng) 時(shí),為同心圓。

  注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

  圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)

  三、立體幾何初步

  1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

 。1)棱柱:

  幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

 。2)棱錐

  幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

 。3)棱臺(tái):

  幾何特征:①上下底面是相似的平行多邊形 ②側(cè)面是梯形 ③側(cè)棱交于原棱錐的頂點(diǎn)

 。4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。

 。5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。

  (6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。

  (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

  俯視圖(從上向下)

  注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度。

  3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法

  斜二測(cè)畫(huà)法特點(diǎn):①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

 、谠瓉(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。

  4、柱體、錐體、臺(tái)體的表面積與體積

  (1)幾何體的表面積為幾何體各個(gè)面的面積的和。

 。2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高, 為斜高,l為母線)

  (3)柱體、錐體、臺(tái)體的體積公式

 。4)球體的表面積和體積公式:V = ; S =

  4、空間點(diǎn)、直線、平面的位置關(guān)系

  公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。

  應(yīng)用: 判斷直線是否在平面內(nèi)

  用符號(hào)語(yǔ)言表示公理1:

  公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線

  符號(hào):平面α和β相交,交線是a,記作α∩β=a。

  符號(hào)語(yǔ)言:

  公理2的作用:

  ①它是判定兩個(gè)平面相交的方法。

 、谒f(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過(guò)公共點(diǎn)。

 、鬯梢耘袛帱c(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。

  公理3:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。

  推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

  公理3及其推論作用:

 、偎强臻g內(nèi)確定平面的依據(jù)

 、谒亲C明平面重合的依據(jù)

  公理4:平行于同一條直線的兩條直線互相平行

  空間直線與直線之間的位置關(guān)系

 、 異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線

 、 異面直線性質(zhì):既不平行,又不相交。

  ③ 異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線

 、 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。

  求異面直線所成角步驟:

  A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。

  B、證明作出的角即為所求角

  C、利用三角形來(lái)求角

 。7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。

  (8)空間直線與平面之間的位置關(guān)系

  直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).

  三種位置關(guān)系的符號(hào)表示:a α a∩α=A a‖α

 。9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);α‖β

  相交——有一條公共直線。α∩β=b

  5、空間中的平行問(wèn)題

 。1)直線與平面平行的判定及其性質(zhì)

  線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

  線線平行 線面平行

  線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。線面平行 線線平行

 。2)平面與平面平行的判定及其性質(zhì)

  兩個(gè)平面平行的判定定理

 。1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行

 。ň面平行→面面平行),

 。2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。

 。ň線平行→面面平行),

  (3)垂直于同一條直線的兩個(gè)平面平行,

  兩個(gè)平面平行的性質(zhì)定理

 。1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)

 。2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)

  7、空間中的垂直問(wèn)題

 。1)線線、面面、線面垂直的定義

 、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直。

  ②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。

 、燮矫婧推矫娲怪保喝绻麅蓚(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。

  (2)垂直關(guān)系的判定和性質(zhì)定理

 、倬面垂直判定定理和性質(zhì)定理

  判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。

  性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。

  ②面面垂直的判定定理和性質(zhì)定理

  判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。

  性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。

  9、空間角問(wèn)題

 。1)直線與直線所成的角

 、賰善叫兄本所成的角:規(guī)定為 。

  ②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

 、蹆蓷l異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線 ,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

 。2)直線和平面所成的角

 、倨矫娴钠叫芯與平面所成的角:規(guī)定為 。

 、谄矫娴拇咕與平面所成的角:規(guī)定為 。

 、燮矫娴男本與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。

  求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。

  在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,

  在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:

 。1)斜線上一點(diǎn)到面的垂線;

  (2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

  (3)二面角和二面角的平面角

 、俣娼堑亩x:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。

 、诙娼堑钠矫娼牵阂远娼堑睦馍先我庖稽c(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

  ③直二面角:平面角是直角的二面角叫直二面角。

  兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角

 、芮蠖娼堑姆椒

  定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角

  垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  概率性質(zhì)與公式

  (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

  (2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);

  (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);

  (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

  貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

  如果一個(gè)事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.

  (5)二項(xiàng)概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個(gè)問(wèn)題可以看成n重貝努力試驗(yàn)(三個(gè)條件:n次重復(fù),每次只有A與A的'逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時(shí),要考慮二項(xiàng)概率公式.

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  一、映射與函數(shù):

  (1)映射的概念:

  (2)一一映射:

  (3)函數(shù)的概念:

  二、函數(shù)的三要素:

  相同函數(shù)的判斷方法:

 、賹(duì)應(yīng)法則;

 、诙x域(兩點(diǎn)必須同時(shí)具備)

  (1)函數(shù)解析式的求法:

 、俣x法(拼湊):

 、趽Q元法:

  ③待定系數(shù)法:

 、苜x值法:

  (2)函數(shù)定義域的求法:

  ①含參問(wèn)題的定義域要分類討論;

 、趯(duì)于實(shí)際問(wèn)題,在求出函數(shù)解析式后;必須求出其定義域,此時(shí)的定義域要根據(jù)實(shí)際意義來(lái)確定。

  (3)函數(shù)值域的.求法:

 、倥浞椒:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來(lái)求值;常轉(zhuǎn)化為型如:的形式;

 、谀媲蠓(反求法):通過(guò)反解,用來(lái)表示,再由的取值范圍,通過(guò)解不等式,得出的取值范圍;常用來(lái)解,型如:;

 、軗Q元法:通過(guò)變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;

  ⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來(lái)求值域;

 、藁静坏仁椒:轉(zhuǎn)化成型如:,利用平均值不等式公式來(lái)求值域;

 、邌握{(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。

 、鄶(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來(lái)求值域。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  【不等關(guān)系及不等式】

  一、不等關(guān)系及不等式知識(shí)點(diǎn)

  1.不等式的定義

  在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)、、連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.

  2.比較兩個(gè)實(shí)數(shù)的大小

  兩個(gè)實(shí)數(shù)的`大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來(lái)定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba

  3.不等式的性質(zhì)

  (1)對(duì)稱性:ab

  (2)傳遞性:ab,ba

  (3)可加性:aa+cb+c,ab,ca+c

  (4)可乘性:ab,cacb0,c0bd;

  (5)可乘方:a0bn(nN,n

  (6)可開(kāi)方:a0

  (nN,n2).

  注意:

  一個(gè)技巧

  作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

  一種方法

  待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  數(shù)列

  1、數(shù)列的定義及數(shù)列的通項(xiàng)公式:

  ① an?f(n),數(shù)列是定義域?yàn)镹

  的函數(shù)f(n),當(dāng)n依次取1,2,???時(shí)的`一列函數(shù)值② i。歸納法

  若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設(shè)an?1?m?p(an?m)解得m,得等比數(shù)列?an?m?

 ?Sn?f(an)

  iv。若Sn?f(an),先求a

  1?得到關(guān)于an?1和an的遞推關(guān)系式

  S?f(a)n?1?n?1?Sn?2an?1

  例如:Sn?2an?1先求a1,再構(gòu)造方程組:??(下減上)an?1?2an?1?2an

 ?Sn?1?2an?1?1

  2、等差數(shù)列:

  ①定義:a

  n?1?an=d(常數(shù)),證明數(shù)列是等差數(shù)列的重要工具。 ②通項(xiàng)d?0時(shí),an為關(guān)于n的一次函數(shù);

  d>0時(shí),an為單調(diào)遞增數(shù)列;d<0時(shí),a

  n為單調(diào)遞減數(shù)列。

  n(n?1)2

  ③前n?na1?

  d,

  d?0時(shí),Sn是關(guān)于n的不含常數(shù)項(xiàng)的一元二次函數(shù),反之也成立。

 、苄再|(zhì):ii。若?an?為等差數(shù)列,則am,am?k,am?2k,…仍為等差數(shù)列。 iii。若?an?為等差數(shù)列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數(shù)列。 iv若A為a,b的等差中項(xiàng),則有A?3。等比數(shù)列:

 、俣x:

  an?1an

 ?q(常數(shù)),是證明數(shù)列是等比數(shù)列的重要工具。

  a?b2

 、谕(xiàng)時(shí)為常數(shù)列)。

 、邸G皀項(xiàng)和

  需特別注意,公比為字母時(shí)要討論。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  高二數(shù)學(xué)重要知識(shí)點(diǎn)歸納

  1、科學(xué)記數(shù)法:將數(shù)字寫(xiě)成形式的記數(shù)法。

  2、統(tǒng)計(jì)圖:生動(dòng)地表示收集到的數(shù)據(jù)圖。

  3.扇形統(tǒng)計(jì)圖:用圓形和扇形表示整體和部分之間的關(guān)系。扇形大小反映了部分占整體百分比的大。辉谏刃谓y(tǒng)計(jì)圖中,每個(gè)部分占整體百分比等于相應(yīng)的扇形圓心角和360°的比。

  4、條形統(tǒng)計(jì)圖:明確表示每個(gè)項(xiàng)目的具體數(shù)量。

  5、折線統(tǒng)計(jì)圖:清楚地反映事物的變化。

  6、確定事件包括:必然事件和不可能事件。

  7、不確定事件:可能發(fā)生或不可能發(fā)生的事件;不確定事件發(fā)生的可能性不同;不確定。

  8、事件概率:可以將事件結(jié)果除以,因此可能的結(jié)果得到理論概率。

  9、有效數(shù)字:對(duì)于一個(gè)近似數(shù),從左邊第一個(gè)不是0的數(shù)字到精確到的數(shù)字。

  10、游戲雙方公平:雙方獲勝的可能性相同。

  11.算數(shù)平均值:簡(jiǎn)稱“平均值”,最常用,受極端值影響較大;加權(quán)平均值12。中位數(shù):數(shù)據(jù)按大小排列,中間位置數(shù),計(jì)算簡(jiǎn)單,受極端值影響較小。

  13.眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)受極端值影響較小,與其他數(shù)據(jù)關(guān)系不大。

  平均數(shù)、眾數(shù)、中位數(shù)都是數(shù)據(jù)的代表,描繪了一組數(shù)據(jù)的“平均水平”。

  15、普查:為一定目的對(duì)調(diào)查對(duì)象進(jìn)行全面調(diào)查;所有的調(diào)查對(duì)象都叫整體,每個(gè)調(diào)查對(duì)象都叫個(gè)體。

  16.抽樣調(diào)查:從整體中提取部分個(gè)體進(jìn)行調(diào)查;從整體中提取的部分個(gè)體稱為樣本(具有代表性)。

  17、隨機(jī)調(diào)查:按機(jī)會(huì)平等的原則進(jìn)行調(diào)查,一般每個(gè)人被調(diào)查的概率相同。

  18、頻率:每個(gè)對(duì)象出現(xiàn)的次數(shù)。

  19、頻率:每個(gè)對(duì)象出現(xiàn)的次數(shù)與總次數(shù)的比值。

  20、等級(jí)差:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差異,描述數(shù)據(jù)的離散程度。

  21、方差:每個(gè)數(shù)據(jù)與平均數(shù)之差的平均數(shù),描述數(shù)據(jù)的離散程度。

  21、標(biāo)準(zhǔn)方差:方差的算數(shù)平方根描述了數(shù)據(jù)的離散程度。

  23、一組數(shù)據(jù)的等級(jí)差、方差、標(biāo)準(zhǔn)方差越小,這組數(shù)據(jù)就越穩(wěn)定。

  24、利用樹(shù)形圖或表格方便地找出事件發(fā)生的概率。

  25.在兩個(gè)對(duì)比圖像中,坐標(biāo)軸上同一單位的長(zhǎng)度具有相同的含義,縱坐標(biāo)從0開(kāi)始繪制。

  高二數(shù)學(xué)必修五知識(shí)點(diǎn)

  1.排列和計(jì)算公式

  從n個(gè)不同的元素中,任取m(m≤n)一個(gè)元素按一定順序排列,稱為從n個(gè)不同元素中取出m個(gè)元素的排列;從n個(gè)不同元素中取出m(m≤n)所有一個(gè)元素的排列數(shù)稱為從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),并使用符號(hào)p(n,m)表示。

  p(n,m)=n(n-1)(n-2)……(n-m 1)=n!/(n-m)!(規(guī)定0!=1)。

  2.組合及計(jì)算公式

  從n個(gè)不同的元素中,任取m(m≤n)一組元素被稱為從n個(gè)不同元素中取出m個(gè)元素的`組合;從n個(gè)不同元素中取出m(m≤n)所有組合的個(gè)元素?cái)?shù)稱為從n個(gè)不同元素中取出m個(gè)元素的組合數(shù)。

  用符號(hào)c(n,m)表示。

  c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);

  3.其他排列和組合公式

  從n個(gè)元素中提取r個(gè)元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!。

  n每個(gè)元素分為k類,每個(gè)類的數(shù)量分別為k類n1,n2...nk這n個(gè)元素的全排列數(shù)為

  n!/(n1!_2!_.._k!)。

  k類元素,每個(gè)類的數(shù)量是無(wú)限的,從中取出m個(gè)元素的組合數(shù)為c(m k-1,m)。

  排列(Pnm(n為下標(biāo),m為上標(biāo)))

  Pnm=n×(n-1)...(n-m 1);Pnm=n!/(n-m)!(注:!是階乘符號(hào));Pnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n下標(biāo)1為上標(biāo))=n

  組合(Cnm(n為下標(biāo),m為上標(biāo)))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=1;Cn1(n下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m

  高二數(shù)學(xué)必修四知識(shí)點(diǎn)

  1.任意角

  (1)角分類:

 、俑鶕(jù)旋轉(zhuǎn)方向的不同,可分為正角、負(fù)角、零角。

 、诟鶕(jù)最終位置的不同,分為象限角和軸線角。

  (2)終端相同的角度:

  最終邊緣和角度相同的角度可以寫(xiě)成 k360(kz)。

  (3)弧度制:

 、1弧度角:將長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角稱為1弧度角。

 、谝(guī)定:正角弧度數(shù)為正數(shù),負(fù)角弧度數(shù)為負(fù)數(shù),零角弧度數(shù)為零||=,l是以角作為圓心角時(shí)的圓弧長(zhǎng)度,r為半徑。

 、塾没《茸鳛閱挝粊(lái)衡量角度的制度稱為弧度制度.比值與r的大小無(wú)關(guān),只與角的大小有關(guān)。

 、芑《扰c角度的轉(zhuǎn)換:360弧度;180弧度。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  第一章:集合和函數(shù)的基本概念,錯(cuò)誤基本都集中在空集這一概念上,而每次考試基本都會(huì)在選填題上涉及這一概念,一個(gè)不小心就是五分沒(méi)了。次一級(jí)的知識(shí)點(diǎn)就是集合的韋恩圖,會(huì)畫(huà)圖,集合的“并、補(bǔ)、交、非”也就解決了,還有函數(shù)的定義域和函數(shù)的單調(diào)性、增減性的概念,這些都是函數(shù)的基礎(chǔ)而且不難理解。在第一輪復(fù)習(xí)中一定要反復(fù)去記這些概念,的方法是寫(xiě)在筆記本上,每天至少看上一遍。

  第二章:基本初等函數(shù):指數(shù)、對(duì)數(shù)、冪函數(shù)三大函數(shù)的運(yùn)算性質(zhì)及圖像。函數(shù)的幾大要素和相關(guān)考點(diǎn)基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點(diǎn)等等。關(guān)于這三大函數(shù)的運(yùn)算公式,多記多用,多做一點(diǎn)練習(xí)基本就沒(méi)多大問(wèn)題。函數(shù)圖像是這一章的.重難點(diǎn),而且圖像問(wèn)題是不能靠記憶的,必須要理解,要會(huì)熟練的畫(huà)出函數(shù)圖像,定義域、值域、零點(diǎn)等等。對(duì)于冪函數(shù)還要搞清楚當(dāng)指數(shù)冪大于一和小于一時(shí)圖像的不同及函數(shù)值的大小關(guān)系,這也是?汲ee(cuò)點(diǎn)。另外指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的對(duì)立關(guān)系及其相互之間要怎樣轉(zhuǎn)化問(wèn)題也要了解清楚。

  第三章:函數(shù)的應(yīng)用。主要就是函數(shù)與方程的結(jié)合。其實(shí)就是的實(shí)根,即函數(shù)的零點(diǎn),也就是函數(shù)圖像與X軸的交點(diǎn)。這三者之間的轉(zhuǎn)化關(guān)系是這一章的重點(diǎn),要學(xué)會(huì)在這三者之間的靈活轉(zhuǎn)化,以求能最簡(jiǎn)單的解決問(wèn)題。關(guān)于證明零點(diǎn)的方法,直接計(jì)算加得必有零點(diǎn),連續(xù)函數(shù)在x軸上方下方有定義則有零點(diǎn)等等,這是這一章的難點(diǎn),這幾種證明方法都要記得,多練習(xí)強(qiáng)化。這二次函數(shù)的零點(diǎn)的Δ判別法,這個(gè)倒不算難。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  第一章:解三角形。掌握正弦余弦公式及其變式和推論和三角面積公式即可。

  第二章:數(shù)列。考試必考。等差等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和及一些性質(zhì)。這一章屬于學(xué)起來(lái)很容易,但做題卻不會(huì)做的類型?荚囶}中,一般都是要求通項(xiàng)公式、前n項(xiàng)和,所以拿到題目之后要帶有目的的去推導(dǎo)。

  第三章:不等式。這一章一般用線性規(guī)劃的形式來(lái)考察。這種題一般是和實(shí)際問(wèn)題聯(lián)系的,所以要會(huì)讀題,從題中找不等式,畫(huà)出線性規(guī)劃圖。然后再根據(jù)實(shí)際問(wèn)題的限制要求求最值。

  選修中的簡(jiǎn)單邏輯用語(yǔ)、圓錐曲線和導(dǎo)數(shù):邏輯用語(yǔ)只要弄懂充分條件和必要條件到底指的是前者還是后者,四種命題的真假性關(guān)系,邏輯連接詞,及否命題和命題的否定的`區(qū)別,考試一般會(huì)用選擇題考這一知識(shí)點(diǎn),難度不大;圓錐曲線一般作為考試的壓軸題出現(xiàn)。而且有多問(wèn),一般第一問(wèn)較簡(jiǎn)單,是求曲線方程,只要記住圓錐曲線的表達(dá)式難度就不大。后面兩到三問(wèn)難打一般會(huì)很大,而且較費(fèi)時(shí)間。所以不建議做。

  這一章屬于學(xué)的比較難,考試也比較難,但是考試要求不高的內(nèi)容;導(dǎo)數(shù),導(dǎo)數(shù)公式、運(yùn)算法則、用導(dǎo)數(shù)求極值和最值的方法。一般會(huì)考察用導(dǎo)數(shù)求最值,會(huì)用導(dǎo)數(shù)公式就難度不大。

【高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-10

高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)12-13

高二數(shù)學(xué)上知識(shí)點(diǎn)總結(jié)11-17

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)最新11-09

高二數(shù)學(xué)平面平行的性質(zhì)知識(shí)點(diǎn)總結(jié)12-17

高二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)01-05

高二物理知識(shí)點(diǎn)總結(jié)11-21

高二物理知識(shí)點(diǎn)總結(jié)01-22

高二語(yǔ)文知識(shí)點(diǎn)總結(jié)07-27

高二政治會(huì)考知識(shí)點(diǎn)總結(jié)11-06