97超级碰碰碰久久久_精品成年人在线观看_精品国内女人视频免费观_福利一区二区久久

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2022-05-21 07:12:09 總結(jié)范文 我要投稿

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇

  總結(jié)是對(duì)過(guò)去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評(píng)價(jià)的書(shū)面材料,它可以提升我們發(fā)現(xiàn)問(wèn)題的能力,因此十分有必須要寫(xiě)一份總結(jié)哦。你所見(jiàn)過(guò)的總結(jié)應(yīng)該是什么樣的?下面是小編為大家收集的高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來(lái)看看吧。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  一、理解集合中的有關(guān)概念

  (1)集合中元素的特征: 確定性 , 互異性 , 無(wú)序性 。

  (2)集合與元素的關(guān)系用符號(hào)=表示。

  (3)常用數(shù)集的符號(hào)表示:自然數(shù)集 ;正整數(shù)集 ;整數(shù)集 ;有理數(shù)集 、實(shí)數(shù)集 。

  (4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。

  (5)空集是指不含任何元素的集合。

  空集是任何集合的子集,是任何非空集合的真子集。

  二、函數(shù)

  一、映射與函數(shù):

  (1)映射的概念: (2)一一映射:(3)函數(shù)的概念:

  二、函數(shù)的三要素:

  相同函數(shù)的判斷方法:①對(duì)應(yīng)法則 ;②定義域 (兩點(diǎn)必須同時(shí)具備)

  (1)函數(shù)解析式的求法:

 、俣x法(拼湊):②換元法:③待定系數(shù)法:④賦值法:

  (2)函數(shù)定義域的求法:

 、俸瑓(wèn)題的定義域要分類討論;

  ②對(duì)于實(shí)際問(wèn)題,在求出函數(shù)解析式后;必須求出其定義域,此時(shí)的定義域要根據(jù)實(shí)際意義來(lái)確定。

  (3)函數(shù)值域的求法:

  ①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來(lái)求值;常轉(zhuǎn)化為型如: 的形式;

  ②逆求法(反求法):通過(guò)反解,用 來(lái)表示 ,再由 的取值范圍,通過(guò)解不等式,得出 的取值范圍;常用來(lái)解,型如: ;

 、軗Q元法:通過(guò)變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;

 、萑怯薪绶:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來(lái)求值域;

  ⑥基本不等式法:轉(zhuǎn)化成型如: ,利用平均值不等式公式來(lái)求值域;

 、邌握{(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的.單調(diào)性求值域。

 、鄶(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來(lái)求值域。

  三、函數(shù)的性質(zhì)

  函數(shù)的單調(diào)性、奇偶性、周期性

  單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。

  判定方法有:定義法(作差比較和作商比較)

  導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))

  復(fù)合函數(shù)法和圖像法。

  應(yīng)用:比較大小,證明不等式,解不等式。

  奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比較f(x) 與f(-x)的關(guān)系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數(shù);

  f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數(shù)。

  判別方法:定義法, 圖像法 ,復(fù)合函數(shù)法

  應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。

  周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。

  其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.

  應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。

  四、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。

  常見(jiàn)圖像變化規(guī)律:(注意平移變化能夠用向量的語(yǔ)言解釋,和按向量平移聯(lián)系起來(lái)思考)

  平移變換 y=f(x)→y=f(x+a),y=f(x)+b

  注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過(guò) 平移得到函數(shù)y=f(2x+4)的圖象。

  (ⅱ)會(huì)結(jié)合向量的平移,理解按照向量 (m,n)平移的意義。

  對(duì)稱變換 y=f(x)→y=f(-x),關(guān)于y軸對(duì)稱

  y=f(x)→y=-f(x) ,關(guān)于x軸對(duì)稱

  y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對(duì)稱

  y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對(duì)稱。(注意:它是一個(gè)偶函數(shù))

  伸縮變換:y=f(x)→y=f(ωx),

  y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。

  一個(gè)重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對(duì)稱;

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  一、導(dǎo)數(shù)的應(yīng)用

  1.用導(dǎo)數(shù)研究函數(shù)的最值

  確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開(kāi)區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。

  2.生活中常見(jiàn)的函數(shù)優(yōu)化問(wèn)題

  1)費(fèi)用、成本最省問(wèn)題

  2)利潤(rùn)、收益最大問(wèn)題

  3)面積、體積最(大)問(wèn)題

  二、推理與證明

  1.歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,破解的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,破解的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的關(guān)系,通過(guò)兩類對(duì)象已知的相似特征得出所需要的相似特征。

  2.類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。

  三、不等式

  對(duì)于含有參數(shù)的一元二次不等式解的討論

  1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。

  2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過(guò)因式分解的方法求出來(lái),則根據(jù)方程的判別式進(jìn)行分類討論。通過(guò)不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結(jié)出來(lái)。

  拓展閱讀

  說(shuō)明:以下內(nèi)容為本文主關(guān)鍵詞的百科內(nèi)容,一詞可能多意,僅作為參考閱讀內(nèi)容,下載的文檔不包含此內(nèi)容。每個(gè)關(guān)鍵詞后面會(huì)隨機(jī)推薦一個(gè)搜索引擎工具,方便用戶從多個(gè)垂直領(lǐng)域了解更多與本文相似的內(nèi)容。

  1、數(shù)學(xué):數(shù)學(xué),是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科。數(shù)學(xué)是人類對(duì)事物的抽象結(jié)構(gòu)與模式進(jìn)行嚴(yán)格描述的一種通用手段,可以應(yīng)用于現(xiàn)實(shí)世界的任何問(wèn)題,所有的`數(shù)學(xué)對(duì)象本質(zhì)上都是人為定義的。從這個(gè)意義上,數(shù)學(xué)屬于形式科學(xué),而不是自然科學(xué)。不同的數(shù)學(xué)家和哲學(xué)家對(duì)數(shù)學(xué)的確切范圍和定義有一系列的看法。在人類歷史發(fā)展和社會(huì)生活中,數(shù)學(xué)發(fā)揮著不可替代的作用,同時(shí)也是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具。數(shù)學(xué)史數(shù)理邏輯與數(shù)學(xué)基礎(chǔ)a:演繹邏輯學(xué)(也稱符號(hào)邏輯學(xué)),b:證明論(也稱元數(shù)學(xué)),c:遞歸論,d:模型論,e:公理集合論,f:數(shù)學(xué)基礎(chǔ),g:數(shù)理邏輯與數(shù)學(xué)基礎(chǔ)其他學(xué)科。數(shù)論a:初等數(shù)論,b:解析數(shù)論,c:代數(shù)數(shù)論,d:超越數(shù)論,e:丟番圖逼近,f:數(shù)的幾何,g:概率數(shù)論,h:計(jì)算數(shù)論,i:數(shù)論其他學(xué)科。代數(shù)學(xué)a:線性代數(shù),b:群論,c:域論,d:李群,e:李代數(shù),f:Kac-Moody代數(shù),g:環(huán)論(包括交換環(huán)與交換代數(shù),...頭條搜索更多高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)

  2、類比推理:類比推理亦稱“類推”。推理的一種形式。根據(jù)兩個(gè)對(duì)象在某些屬性上相同或相似,通過(guò)比較而推斷出它們?cè)谄渌麑傩陨弦蚕嗤耐评磉^(guò)程。它是從觀察個(gè)別現(xiàn)象開(kāi)始的,因而近似歸納推理。但它又不是由特殊到一般,而是由特殊到特殊,因而又不同于歸納推理。分完全類推和不完全類推兩種形式。完全類推是兩個(gè)或兩類事物在進(jìn)行比較的方面完全相同時(shí)的類推;不完全類推是兩個(gè)或兩類事物在進(jìn)行比較的方面不完全相同時(shí)的類推。這是科學(xué)研究中常用的方法之一。它是從特殊推向特殊的推理。類比推理是根據(jù)兩個(gè)或兩類對(duì)象有部分屬性相同,從而推出它們的其他屬性也相同的推理。簡(jiǎn)稱類推、類比。以關(guān)于兩個(gè)事物某些屬性相同的判斷為前提,推出兩個(gè)事物的其他屬性相同的結(jié)論的推理。如聲和光有不少屬性相同--直線傳播,有反射、折射和干擾等現(xiàn)象;由此推出:既然聲有波動(dòng)性質(zhì),光也有波動(dòng)性質(zhì)。這就是類比推理。類比推理具有或然性。如果前提中確認(rèn)的共同屬性很少,而且共同屬性和推出來(lái)的屬性沒(méi)有什么關(guān)系,這樣的類比推...谷歌搜索更多高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)

  3、總結(jié):總結(jié)是事后對(duì)某一階段的工作或某項(xiàng)工作的完成情況,包括取得的成績(jī)、存在的問(wèn)題及得到的經(jīng)驗(yàn)和教訓(xùn)加以回顧和分析,為今后的工作提供幫助和借鑒的一種書(shū)面材料。(1)自身性?偨Y(jié)都是以第一人稱,從自身出發(fā)。它是單位或個(gè)人自身實(shí)踐活動(dòng)的反映,其內(nèi)容行文來(lái)自自身實(shí)踐,其結(jié)論也為指導(dǎo)今后自身實(shí)踐。(2)指導(dǎo)性?偨Y(jié)以回顧思考的方式對(duì)自身以往實(shí)踐做理性認(rèn)識(shí),找出事物本質(zhì)和發(fā)展規(guī)律,取得經(jīng)驗(yàn),避免失誤,以指導(dǎo)未來(lái)工作。(3)理論性?偨Y(jié)是理論的升華,是對(duì)前一階段工作的經(jīng)驗(yàn)、教訓(xùn)的分析研究,借此上升到理論的高度,并從中提煉出有規(guī)律性的東西,從而提高認(rèn)識(shí),以正確的認(rèn)識(shí)來(lái)把握客觀事物,更好地指導(dǎo)今后的實(shí)際工作。(4)客觀性。總結(jié)是對(duì)實(shí)際工作再認(rèn)識(shí)的過(guò)程,是對(duì)前一階段工作的回顧?偨Y(jié)的內(nèi)容必須要完全忠于自身的客觀實(shí)踐,其材料必須以客觀事實(shí)為依據(jù),不允許東拼西湊,要真實(shí)、客觀地分析情況、總結(jié)經(jīng)驗(yàn)。(1)綜合性總結(jié)。對(duì)某一單位、某一部門工作進(jìn)行全面性總結(jié),既反...頭條搜索更多高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)

  4、因式分解:把一個(gè)多項(xiàng)式在一個(gè)范圍(如實(shí)數(shù)范圍內(nèi)分解,即所有項(xiàng)均為實(shí)數(shù))化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項(xiàng)式的因式分解,也叫作把這個(gè)多項(xiàng)式分解因式。把一個(gè)多項(xiàng)式在一個(gè)范圍化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項(xiàng)式的因式分解,也叫作把這個(gè)多項(xiàng)式分解因式。因式分解是中學(xué)數(shù)學(xué)中最重要的恒等變形之一,它被廣泛地應(yīng)用于初等數(shù)學(xué)之中,在數(shù)學(xué)求根作圖、解一元二次方程方面也有很廣泛的應(yīng)用,是解決許多數(shù)學(xué)問(wèn)題的有力工具。因式分解方法靈活,技巧性強(qiáng)。學(xué)習(xí)這些方法與技巧,不僅是掌握因式分解內(nèi)容所需的,而且對(duì)于培養(yǎng)解題技能、發(fā)展思維能力都有著十分獨(dú)特的作用。學(xué)習(xí)它,既可以復(fù)習(xí)整式的四則運(yùn)算,又為學(xué)習(xí)分式打好基礎(chǔ);學(xué)好它,既可以培養(yǎng)學(xué)生的觀察、思維發(fā)展性、運(yùn)算能力,又可以提高綜合分析和解決問(wèn)題的能力。基本結(jié)論:分解因式為整式乘法的逆過(guò)程。高級(jí)結(jié)論:在高等代數(shù)上,因式分解有一些重要結(jié)論,在初等代數(shù)層面上證明很困難,但是理解很容易。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件.

  二、函數(shù)(30課時(shí),12個(gè))1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對(duì)數(shù);10.對(duì)數(shù)的運(yùn)算性質(zhì);11.對(duì)數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例.

  三、數(shù)列(12課時(shí),5個(gè))1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式.

  四、三角函數(shù)(46課時(shí)17個(gè))1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4,單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.

  五、平面向量(12課時(shí),8個(gè))1.向量2.向量的加法與減法3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移.

  六、不等式(22課時(shí),5個(gè))1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對(duì)值的不等式.

  七、直線和圓的方程(22課時(shí),12個(gè))1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡(jiǎn)單線性規(guī)劃問(wèn)題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程.

  八、圓錐曲線(18課時(shí),7個(gè))1橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡(jiǎn)單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡(jiǎn)單幾何性質(zhì).九、(B)直線、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))1.平面及基本性質(zhì);2.平面圖形直觀圖的畫(huà)法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5,直線和平面垂直的判與性質(zhì);6.三垂線定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的.射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.

  十、排列、組合、二項(xiàng)式定理(18課時(shí),8個(gè))1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理.2.排列;3.排列數(shù)公式’4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個(gè)性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開(kāi)式的性質(zhì).

  十一、概率(12課時(shí),5個(gè))1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn).選修Ⅱ(24個(gè))

  十二、概率與統(tǒng)計(jì)(14課時(shí),6個(gè))1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸.

  十三、極限(12課時(shí),6個(gè))1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性.

  十四、導(dǎo)數(shù)(18課時(shí),8個(gè))1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見(jiàn)函數(shù)的導(dǎo)數(shù);4.兩個(gè)函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8函數(shù)的最大值和最小值.

  十五、復(fù)數(shù)(4課時(shí),4個(gè))1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法答案補(bǔ)充高中數(shù)學(xué)有130個(gè)知識(shí)點(diǎn),從前一份試卷要考查90個(gè)知識(shí)點(diǎn),覆蓋率達(dá)70%左右,而且把這一項(xiàng)作為衡量試卷成功與否的標(biāo)準(zhǔn)之一.這一傳統(tǒng)近年被打破,取而代之的是關(guān)注思維,突出能力,重視思想方法和思維能力的考查.現(xiàn)在的我們學(xué)數(shù)學(xué)比前人幸福啊!!相信對(duì)你的學(xué)習(xí)會(huì)有幫助的,祝你成功!答案補(bǔ)充一試全國(guó)高中數(shù)學(xué)聯(lián)賽的一試競(jìng)賽大綱,完全按照全日制中學(xué)《數(shù)學(xué)教學(xué)大綱》中所規(guī)定的教學(xué)要求和內(nèi)容,即高考所規(guī)定的知識(shí)范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數(shù)學(xué)競(jìng)賽大綱所確定的所有內(nèi)容。補(bǔ)充要求:面積和面積方法。幾個(gè)重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個(gè)重要的極值:到三角形三頂點(diǎn)距離之和最小的點(diǎn)--費(fèi)馬點(diǎn)。到三角形三頂點(diǎn)距離的平方和最小的點(diǎn),重心。三角形內(nèi)到三邊距離之積最大的點(diǎn),重心。幾何不等式。簡(jiǎn)單的等周問(wèn)題。了解下述定理:在周長(zhǎng)一定的n邊形的集合中,正n邊形的面積最大。在周長(zhǎng)一定的簡(jiǎn)單閉曲線的集合中,圓的面積最大。在面積一定的n邊形的集合中,正n邊形的周長(zhǎng)最小。在面積一定的簡(jiǎn)單閉曲線的集合中,圓的周長(zhǎng)最小。幾何中的運(yùn)動(dòng):反射、平移、旋轉(zhuǎn)。復(fù)數(shù)方法、向量方法。平面凸集、凸包及應(yīng)用。答案補(bǔ)充第二數(shù)學(xué)歸納法。遞歸,一階、二階遞歸,特征方程法。函數(shù)迭代,求n次迭代,簡(jiǎn)單的函數(shù)方程。n個(gè)變?cè)钠骄坏仁,柯西不等式,排序不等式及?yīng)用。復(fù)數(shù)的指數(shù)形式,歐拉公式,棣莫佛定理,單位根,單位根的應(yīng)用。圓排列,有重復(fù)的排列與組合,簡(jiǎn)單的組合恒等式。一元n次方程(多項(xiàng)式)根的個(gè)數(shù),根與系數(shù)的關(guān)系,實(shí)系數(shù)方程虛根成對(duì)定理。簡(jiǎn)單的初等數(shù)論問(wèn)題,除初中大綱中所包括的內(nèi)容外,還應(yīng)包括無(wú)窮遞降法,同余,歐幾里得除法,非負(fù)最小完全剩余類,高斯函數(shù),費(fèi)馬小定理,歐拉函數(shù),孫子定理,格點(diǎn)及其性質(zhì)。3、立體幾何多面角,多面角的性質(zhì)。三面角、直三面角的基本性質(zhì)。正多面體,歐拉定理。體積證法。截面,會(huì)作截面、表面展開(kāi)圖。4、平面解析幾何直線的法線式,直線的極坐標(biāo)方程,直線束及其應(yīng)用。二元一次不等式表示的區(qū)域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  1、向量的加法

  向量的加法滿足平行四邊形法則和三角形法則。

  AB+BC=AC。

  a+b=(x+x',y+y')。

  a+0=0+a=a。

  向量加法的運(yùn)算律:

  交換律:a+b=b+a;

  結(jié)合律:(a+b)+c=a+(b+c)。

  2、向量的減法

  如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

  AB-AC=CB. 即“共同起點(diǎn),指向被減”

  a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

  3、數(shù)乘向量

  實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

  當(dāng)λ>0時(shí),λa與a同方向;

  當(dāng)λ<0時(shí),λa與a反方向;

  當(dāng)λ=0時(shí),λa=0,方向任意。

  當(dāng)a=0時(shí),對(duì)于任意實(shí)數(shù)λ,都有λa=0。

  注:按定義知,如果λa=0,那么λ=0或a=0。

  實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長(zhǎng)或壓縮。

  當(dāng)∣λ∣>1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長(zhǎng)為原來(lái)的∣λ∣倍;

  當(dāng)∣λ∣<1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來(lái)的∣λ∣倍。

  數(shù)與向量的乘法滿足下面的運(yùn)算律

  結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。

  向量對(duì)于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.

  數(shù)對(duì)于向量的分配律(第二分配律):λ(a+b)=λa+λb.

  數(shù)乘向量的消去律:① 如果實(shí)數(shù)λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

  4、向量的.的數(shù)量積

  定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

  定義:兩個(gè)向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個(gè)數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

  向量的數(shù)量積的坐標(biāo)表示:a·b=x·x'+y·y'。

  向量的數(shù)量積的運(yùn)算率

  a·b=b·a(交換率);

  (a+b)·c=a·c+b·c(分配率);

  向量的數(shù)量積的性質(zhì)

  a·a=|a|的平方。

  a⊥b 〈=〉a·b=0。

  |a·b|≤|a|·|b|。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  1、幾何概型的定義:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡(jiǎn)稱幾何概型。

  2、幾何概型的概率公式:P(A)=構(gòu)成事件A的區(qū)域長(zhǎng)度(面積或體積);

  試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域長(zhǎng)度(面積或體積)

  3、幾何概型的特點(diǎn):

  1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);

  2)每個(gè)基本事件出現(xiàn)的可能性相等、

  4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗(yàn)結(jié)果是可數(shù)的;而幾何概型則是在試驗(yàn)中出現(xiàn)無(wú)限多個(gè)結(jié)果,且與事件的區(qū)域長(zhǎng)度(或面積、體積等)有關(guān),即試驗(yàn)結(jié)果具有無(wú)限性,是不可數(shù)的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗(yàn)結(jié)果都具有等可能性,這是二者的共性。

  通過(guò)以上對(duì)于幾何概型的基本知識(shí)點(diǎn)的梳理,我們不難看出其要核是:要抓住幾何概型具有無(wú)限性和等可能性兩個(gè)特點(diǎn),無(wú)限性是指在一次試驗(yàn)中,基本事件的個(gè)數(shù)可以是無(wú)限的,這是區(qū)分幾何概型與古典概型的關(guān)鍵所在;等可能性是指每一個(gè)基本事件發(fā)生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問(wèn)題和古典概型的`基本思路是相同的,同屬于“比例法”,即隨機(jī)事件A的概率可以用“事件A包含的基本事件所占的圖形的長(zhǎng)度、面積(體積)和角度等”與“試驗(yàn)的基本事件所占總長(zhǎng)度、面積(體積)和角度等”之比來(lái)表示。下面就幾何概型常見(jiàn)類型題作一歸納梳理。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  反正弦函數(shù)的導(dǎo)數(shù):正弦函數(shù)y=sin_在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsin_,表示一個(gè)正弦值為_(kāi)的角,該角的`范圍在[-π/2,π/2]區(qū)間內(nèi)。定義域[-1,1],值域[-π/2,π/2]。

  反函數(shù)求導(dǎo)方法

  若F(_),G(_)互為反函數(shù),

  則:F'(_)_G'(_)=1

  E.G.:y=arcsin__=siny

  y'__'=1(arcsin_)'_(siny)'=1

  y'=1/(siny)'=1/(cosy)=1/根號(hào)(1-sin^2y)=1/根號(hào)(1-_^2)

  其余依此類推

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  (1)總體和樣本

 、僭诮y(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體。

 、诎衙總(gè)研究對(duì)象叫做個(gè)體。

 、郯芽傮w中個(gè)體的總數(shù)叫做總體容量。

  ④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,。。。。,研究,我們稱它為樣本。其中個(gè)體的個(gè)數(shù)稱為樣本容量。

 。2)簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨

  機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的'每個(gè)單位完全獨(dú)立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。

  (3)簡(jiǎn)單隨機(jī)抽樣常用的方法:

 、俪楹灧

 、陔S機(jī)數(shù)表法

 、塾(jì)算機(jī)模擬法

  在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:

 、倏傮w變異情況;

 、谠试S誤差范圍;

  ③概率保證程度。

 。4)抽簽法:

  ①給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);

 、跍(zhǔn)備抽簽的工具,實(shí)施抽簽;

 、蹖(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  一、直線與方程

 。1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

 。2)直線的斜率

 、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。

  當(dāng) 時(shí), ; 當(dāng) 時(shí), ; 當(dāng) 時(shí), 不存在。

  ②過(guò)兩點(diǎn)的直線的斜率公式:

  注意下面四點(diǎn):(1)當(dāng) 時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

 。3)直線方程

 、冱c(diǎn)斜式: 直線斜率k,且過(guò)點(diǎn)

  注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。

  當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

 、谛苯厥剑 ,直線斜率為k,直線在y軸上的截距為b

 、蹆牲c(diǎn)式: ( )直線兩點(diǎn) ,

 、芙鼐厥剑

  其中直線 與 軸交于點(diǎn) ,與 軸交于點(diǎn) ,即 與 軸、 軸的截距分別為 。

 、菀话闶剑 (A,B不全為0)

  注意:各式的適用范圍 特殊的方程如:

  平行于x軸的直線: (b為常數(shù)); 平行于y軸的直線: (a為常數(shù));

 。5)直線系方程:即具有某一共同性質(zhì)的直線

 。ㄒ唬┢叫兄本系

  平行于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))

  (二)垂直直線系

  垂直于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))

 。ㄈ┻^(guò)定點(diǎn)的直線系

  (。┬甭蕿閗的直線系: ,直線過(guò)定點(diǎn) ;

 。áⅲ┻^(guò)兩條直線 , 的交點(diǎn)的直線系方程為

  ( 為參數(shù)),其中直線 不在直線系中。

  (6)兩直線平行與垂直

  當(dāng) , 時(shí),;

  注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。

 。7)兩條直線的交點(diǎn)

  相交

  交點(diǎn)坐標(biāo)即方程組 的一組解。

  方程組無(wú)解 ; 方程組有無(wú)數(shù)解 與 重合

 。8)兩點(diǎn)間距離公式:設(shè) 是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),

  則

 。9)點(diǎn)到直線距離公式:一點(diǎn) 到直線 的距離

 。10)兩平行直線距離公式

  在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。

  二、圓的方程

  1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

  2、圓的方程

  (1)標(biāo)準(zhǔn)方程 ,圓心 ,半徑為r;

  (2)一般方程

  當(dāng) 時(shí),方程表示圓,此時(shí)圓心為 ,半徑為

  當(dāng) 時(shí),表示一個(gè)點(diǎn); 當(dāng) 時(shí),方程不表示任何圖形。

 。3)求圓方程的方法:

  一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。

  3、直線與圓的位置關(guān)系:

  直線與圓的位置關(guān)系有相離,相切,相交三種情況:

 。1)設(shè)直線 ,圓 ,圓心 到l的距離為 ,則有 ; ;

  (2)過(guò)圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

  (3)過(guò)圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2

  4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

  設(shè)圓 ,

  兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

  當(dāng) 時(shí)兩圓外離,此時(shí)有公切線四條;

  當(dāng) 時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

  當(dāng) 時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當(dāng) 時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;

  當(dāng) 時(shí),兩圓內(nèi)含; 當(dāng) 時(shí),為同心圓。

  注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

  圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)

  三、立體幾何初步

  1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

 。1)棱柱:

  幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

 。2)棱錐

  幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

  (3)棱臺(tái):

  幾何特征:①上下底面是相似的平行多邊形 ②側(cè)面是梯形 ③側(cè)棱交于原棱錐的頂點(diǎn)

 。4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

  幾何特征:①底面是全等的'圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。

 。5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。

 。6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。

 。7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

  俯視圖(從上向下)

  注:正視圖反映了物體的高度和長(zhǎng)度;俯視圖反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體的高度和寬度。

  3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法

  斜二測(cè)畫(huà)法特點(diǎn):①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

 、谠瓉(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。

  4、柱體、錐體、臺(tái)體的表面積與體積

 。1)幾何體的表面積為幾何體各個(gè)面的面積的和。

 。2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高, 為斜高,l為母線)

 。3)柱體、錐體、臺(tái)體的體積公式

 。4)球體的表面積和體積公式:V = ; S =

  4、空間點(diǎn)、直線、平面的位置關(guān)系

  公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。

  應(yīng)用: 判斷直線是否在平面內(nèi)

  用符號(hào)語(yǔ)言表示公理1:

  公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線

  符號(hào):平面α和β相交,交線是a,記作α∩β=a。

  符號(hào)語(yǔ)言:

  公理2的作用:

 、偎桥卸▋蓚(gè)平面相交的方法。

 、谒f(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過(guò)公共點(diǎn)。

 、鬯梢耘袛帱c(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。

  公理3:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。

  推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

  公理3及其推論作用:

 、偎强臻g內(nèi)確定平面的依據(jù)

  ②它是證明平面重合的依據(jù)

  公理4:平行于同一條直線的兩條直線互相平行

  空間直線與直線之間的位置關(guān)系

 、 異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線

  ② 異面直線性質(zhì):既不平行,又不相交。

 、 異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線

 、 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。

  求異面直線所成角步驟:

  A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。

  B、證明作出的角即為所求角

  C、利用三角形來(lái)求角

 。7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。

  (8)空間直線與平面之間的位置關(guān)系

  直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn).

  三種位置關(guān)系的符號(hào)表示:a α a∩α=A a‖α

 。9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);α‖β

  相交——有一條公共直線。α∩β=b

  5、空間中的平行問(wèn)題

  (1)直線與平面平行的判定及其性質(zhì)

  線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

  線線平行 線面平行

  線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。線面平行 線線平行

  (2)平面與平面平行的判定及其性質(zhì)

  兩個(gè)平面平行的判定定理

 。1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行

 。ň面平行→面面平行),

 。2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。

 。ň線平行→面面平行),

 。3)垂直于同一條直線的兩個(gè)平面平行,

  兩個(gè)平面平行的性質(zhì)定理

 。1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)

 。2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)

  7、空間中的垂直問(wèn)題

 。1)線線、面面、線面垂直的定義

 、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直。

 、诰面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。

  ③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。

 。2)垂直關(guān)系的判定和性質(zhì)定理

 、倬面垂直判定定理和性質(zhì)定理

  判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。

  性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。

 、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理

  判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。

  性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。

  9、空間角問(wèn)題

  (1)直線與直線所成的角

 、賰善叫兄本所成的角:規(guī)定為 。

  ②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

 、蹆蓷l異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線 ,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

  (2)直線和平面所成的角

 、倨矫娴钠叫芯與平面所成的角:規(guī)定為 。

 、谄矫娴拇咕與平面所成的角:規(guī)定為 。

 、燮矫娴男本與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。

  求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。

  在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,

  在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:

 。1)斜線上一點(diǎn)到面的垂線;

 。2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

 。3)二面角和二面角的平面角

 、俣娼堑亩x:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。

  ②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

 、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼。

  兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角

  ④求二面角的方法

  定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角

  垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))

  1、集合;

  2、子集;

  3、補(bǔ)集;

  4、交集;

  5、并集;

  6、邏輯連結(jié)詞;

  7、四種命題;

  8、充要條件。

  二、函數(shù)(30課時(shí),12個(gè))

  1、映射;

  2、函數(shù);

  3、函數(shù)的單調(diào)性;

  4、反函數(shù);

  5、互為反函數(shù)的函數(shù)圖象間的關(guān)系;

  6、指數(shù)概念的擴(kuò)充;

  7、有理指數(shù)冪的運(yùn)算;

  8、指數(shù)函數(shù);

  9、對(duì)數(shù);

  10、對(duì)數(shù)的運(yùn)算性質(zhì);

  11、對(duì)數(shù)函數(shù)。

  12、函數(shù)的應(yīng)用舉例。

  三、數(shù)列(12課時(shí),5個(gè))

  1、數(shù)列;

  2、等差數(shù)列及其通項(xiàng)公式;

  3、等差數(shù)列前n項(xiàng)和公式;

  4、等比數(shù)列及其通頂公式;

  5、等比數(shù)列前n項(xiàng)和公式。

  四、三角函數(shù)(46課時(shí),17個(gè))

  1、角的概念的.推廣;

  2、弧度制;

  3、任意角的三角函數(shù);

  4、單位圓中的三角函數(shù)線;

  5、同角三角函數(shù)的基本關(guān)系式;

  6、正弦、余弦的誘導(dǎo)公式;

  7、兩角和與差的正弦、余弦、正切;

  8、二倍角的正弦、余弦、正切;

  9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);

  10、周期函數(shù);

  11、函數(shù)的奇偶性;

  12、函數(shù)的圖象;

  13、正切函數(shù)的圖象和性質(zhì);

  14、已知三角函數(shù)值求角;

  15、正弦定理;

  16、余弦定理;

  17、斜三角形解法舉例。

  五、平面向量(12課時(shí),8個(gè))

  1、向量;

  2、向量的加法與減法;

  3、實(shí)數(shù)與向量的積;

  4、平面向量的坐標(biāo)表示;

  5、線段的定比分點(diǎn);

  6、平面向量的數(shù)量積;

  7、平面兩點(diǎn)間的距離;

  8、平移。

  六、不等式(22課時(shí),5個(gè))

  1、不等式;

  2、不等式的基本性質(zhì);

  3、不等式的證明;

  4、不等式的解法;

  5、含絕對(duì)值的不等式。

  七、直線和圓的方程(22課時(shí),12個(gè))

  1、直線的傾斜角和斜率;

  2、直線方程的點(diǎn)斜式和兩點(diǎn)式;

  3、直線方程的一般式;

  4、兩條直線平行與垂直的條件;

  5、兩條直線的交角;

  6、點(diǎn)到直線的距離;

  7、用二元一次不等式表示平面區(qū)域;

  8、簡(jiǎn)單線性規(guī)劃問(wèn)題;

  9、曲線與方程的概念;

  10、由已知條件列出曲線方程;

  11、圓的標(biāo)準(zhǔn)方程和一般方程;

  12、圓的參數(shù)方程。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  1.萬(wàn)能公式令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2)

  2.輔助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a

  3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2] 向量公式: 1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a| 2.P(x,y) 那么 向量OP=x 向量i+y 向量j |向量OP|=根號(hào)(x 平方+y 平方) 3.P1(x1,y1) P2(x2,y2) 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根號(hào)[(x2-x1)平方+(y2-y1)平方]

  4.向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b| (x1x2+y1y2) 根號(hào)(x1平方+y1 平方)*根號(hào)(x2 平方+y2 平方)

  5.空間向量:同上推論 (提示:向量a={x,y,z})

  6.充要條件: 如果向量a向量b 那么向量a*向量b=0 如果向量a//向量b 那么向量a*向量b=|向量a|*|向量b| 或者x1/x2=y1/y2

  7.|向量a向量b|平方 =|向量a|平方+|向量b|平方2 向量a*向量b =(向量a向量b)平方

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  1、直線的傾斜角的概念:當(dāng)直線l與x軸相交時(shí),取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí),規(guī)定α=0°.

  2、傾斜角α的取值范圍:0°≤α<180°.

  當(dāng)直線l與x軸垂直時(shí),α=90°.

  3、直線的斜率:

  一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫(xiě)字母k表示,也就是k=tanα

 、女(dāng)直線l與x軸平行或重合時(shí),α=0°,k=tan0°=0;

 、飘(dāng)直線l與x軸垂直時(shí),α=90°,k不存在.

  由此可知,一條直線l的`傾斜角α一定存在,但是斜率k不一定存在.

  4、直線的斜率公式:

  給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1≠x2,用兩點(diǎn)的坐標(biāo)來(lái)表示直線P1P2的斜率:

  斜率公式:

  3.1.2兩條直線的平行與垂直

  1、兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即

  注意:上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立.即如果k1=k2,那么一定有L1∥L2

  2、兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負(fù)倒數(shù);反之,如果它們的斜率互為負(fù)倒數(shù),那么它們互相垂直,即

  3.2.1直線的點(diǎn)斜式方程

  1、直線的點(diǎn)斜式方程:直線經(jīng)過(guò)點(diǎn)且斜率為

  2、、直線的斜截式方程:已知直線的斜率為

  3.2.2直線的兩點(diǎn)式方程

  1、直線的兩點(diǎn)式方程:已知兩點(diǎn)

  2、直線的截距式方程:已知直線

  3.2.3直線的一般式方程

  1、直線的一般式方程:關(guān)于x、y的二元一次方程

  (A,B不同時(shí)為0)

  2、各種直線方程之間的互化。

  3.3直線的交點(diǎn)坐標(biāo)與距離公式

  3.3.1兩直線的交點(diǎn)坐標(biāo)

  1、給出例題:兩直線交點(diǎn)坐標(biāo)

  L1:3x+4y-2=0

  L1:2x+y+2=0

  解:解方程組

  得x=-2,y=2

  所以L1與L2的交點(diǎn)坐標(biāo)為M(-2,2)

  3.3.2兩點(diǎn)間距離

  兩點(diǎn)間的距離公式

  3.3.3點(diǎn)到直線的距離公式

  1.點(diǎn)到直線距離公式:

  2、兩平行線間的距離公式:

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  第一章:三角函數(shù)?荚嚤乜碱}。誘導(dǎo)公式和基本三角函數(shù)圖像的一些性質(zhì)只要記住會(huì)畫(huà)圖就行,難度在于三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相,及根據(jù)最值計(jì)算A、B的值和周期,及等變化時(shí)圖像及性質(zhì)的變化,這一知識(shí)點(diǎn)內(nèi)容較多,需要多花時(shí)間,首先要記憶,其次要多做題強(qiáng)化練習(xí),只要能踏踏實(shí)實(shí)去做,也不難掌握,畢竟不存在理解上的難度。

  第二章:平面向量。個(gè)人覺(jué)得這一章難度較大,這也是我掌握最差的一章。向量的運(yùn)算性質(zhì)及三角形法則平行四邊形法則難度都不大,只要在計(jì)算的時(shí)候記住要同起點(diǎn)的向量。向量共線和垂直的數(shù)學(xué)表達(dá),這是計(jì)算當(dāng)中經(jīng)常要用的公式。向量的共線定理、基本定理、數(shù)量積公式。難點(diǎn)在于分點(diǎn)坐標(biāo)公式,首先要準(zhǔn)確記憶。向量在考試過(guò)程一般不會(huì)單獨(dú)出現(xiàn),常常是作為解題要用的工具出現(xiàn),用向量時(shí)要首先找出合適的.向量,個(gè)人認(rèn)為這個(gè)比較難,常常找不對(duì)。有同樣情況的同學(xué)建議多看有關(guān)題的圖形。

  第三章:三角恒等變換。這一章公式特別多。和差倍半角公式都是會(huì)用到的公式,所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫(xiě)之后貼在桌子上,天天都要看。而且的三角函數(shù)變換都有一定的規(guī)律,記憶的時(shí)候可以結(jié)合起來(lái)去記。除此之外,就是多練習(xí)。要從多練習(xí)中找到變換的規(guī)律,比如一般都要化等等。這一章也是考試必考,所以一定要重點(diǎn)掌握。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  (1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;

  (2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;

  (3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;

  (4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;

  (5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的`頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。

  (6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率。

  然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  課內(nèi)重視聽(tīng)講,課后及時(shí)復(fù)習(xí)。

  新知識(shí)的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時(shí)要緊跟老師的思路,積極展開(kāi)思維預(yù)測(cè)下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識(shí)和基本技能的學(xué)習(xí),課后要及時(shí)復(fù)習(xí)不留疑點(diǎn)。首先要在做各種習(xí)題之前將老師所講的知識(shí)點(diǎn)回憶一遍,正確掌握各類公式的推理過(guò)程,應(yīng)盡量回憶而不采用不清楚立即翻書(shū)之舉。認(rèn)真獨(dú)立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問(wèn)的學(xué)習(xí)作風(fēng),對(duì)于有些題目由于自己的思路不清,一時(shí)難以解出,應(yīng)讓自己冷靜下來(lái)認(rèn)真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識(shí)的點(diǎn)、線、面結(jié)合起來(lái)交織成知識(shí)網(wǎng)絡(luò),納入自己的知識(shí)體系。

  適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。

  要想學(xué)好數(shù)學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的.習(xí)題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫(xiě)出自己的解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正。在平時(shí)要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)練習(xí)無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的。

  調(diào)整心態(tài),正確對(duì)待考試。

  首先,應(yīng)把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上,因?yàn)槊看慰荚囌冀^大部分的也是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。

  在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對(duì)于一些容易的基礎(chǔ)題要有十二分把握拿全分;對(duì)于一些難題,也要盡量拿分,考試中要學(xué)會(huì)嘗試得分,使自己的水平正常甚至超常發(fā)揮。

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  一、導(dǎo)數(shù)的應(yīng)用

  1、用導(dǎo)數(shù)研究函數(shù)的最值

  確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開(kāi)區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。

  學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。

  2、生活中常見(jiàn)的函數(shù)優(yōu)化問(wèn)題

  1)費(fèi)用、成本最省問(wèn)題

  2)利潤(rùn)、收益最大問(wèn)題

  3)面積、體積最(大)問(wèn)題

  二、推理與證明

  1、歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的關(guān)系,通過(guò)兩類對(duì)象已知的相似特征得出所需要的相似特征。

  2、類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。

  三、不等式

  對(duì)于含有參數(shù)的一元二次不等式解的討論

  1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。

  2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過(guò)因式分解的方法求出來(lái),則根據(jù)方程的判別式進(jìn)行分類討論。

  通過(guò)不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結(jié)出來(lái)。

  四、坐標(biāo)平面上的直線

  1、內(nèi)容要目:直線的點(diǎn)方向式方程、直線的點(diǎn)法向式方程、點(diǎn)斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點(diǎn)到直線的距離,兩直線的夾角以及兩平行線之間的距離。

  2、基本要求:掌握求直線的`方法,熟練轉(zhuǎn)化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點(diǎn)與直線、直線與直線的不同位置,能正確求點(diǎn)到直線的距離、兩直線的交點(diǎn)坐標(biāo)及兩直線的夾角大小。

  3、重難點(diǎn):初步建立代數(shù)方法解決幾何問(wèn)題的觀念,正確將幾何條件與代數(shù)表示進(jìn)行轉(zhuǎn)化,定量地研究點(diǎn)與直線、直線與直線的位置關(guān)系。根據(jù)兩個(gè)獨(dú)立條件求出直線方程。熟練運(yùn)用待定系數(shù)法。

  五、圓錐曲線

  1、內(nèi)容要目:直角坐標(biāo)系中,曲線C是方程F(x,y)=0的曲線及方程F(x,y)=0是曲線C的方程,圓的標(biāo)準(zhǔn)方程及圓的一般方程。橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程及它們的性質(zhì)。

  2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數(shù)方法判斷定點(diǎn)是否在曲線

  上及求曲線的交點(diǎn)。掌握?qǐng)A、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標(biāo)。利用直線和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應(yīng)的幾何問(wèn)題。

  3、重難點(diǎn):建立數(shù)形結(jié)合的概念,理解曲線與方程的對(duì)應(yīng)關(guān)系,掌握代數(shù)研究幾何的方法,掌握把已知條件轉(zhuǎn)化為等價(jià)的代數(shù)表示,通過(guò)代數(shù)方法解決幾何問(wèn)題。

【高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高二數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)02-24

高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)08-26

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-10

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10-18

高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)12-13

高二數(shù)學(xué)上知識(shí)點(diǎn)總結(jié)11-17

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(15篇)10-19

高二數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)01-05

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(集合15篇)06-24