- 相關(guān)推薦
小學(xué)數(shù)學(xué)課圓柱的體積課后教學(xué)反思
今天上了《圓柱的體積》一課,覺得比以前上得輕松,回到辦公室細細品味上課的過程,頗有幾分感受:
在本課中,當學(xué)生面對新的問題情境—“圓柱的體積該怎么求?”時,能從圓的面積公式的推導(dǎo),根據(jù)已有的知識作出 “轉(zhuǎn)化”的判斷。當然,由于知識經(jīng)驗的不足,表達得不是很清晰。但學(xué)生的這些都是有價值的。這些“猜想”閃爍著學(xué)生智慧的火花,折射出學(xué)生的創(chuàng)造精神。在此基礎(chǔ)上,讓學(xué)生以小組合作方式,利用已切開的圓柱體教具進行驗證,在討論聲中,學(xué)生獲得了真知。可見,教師要保護學(xué)生的創(chuàng)造熱情并給以科學(xué)探究方法的引導(dǎo),以發(fā)展學(xué)生的創(chuàng)造性。在這點上,我對學(xué)生的探究精神給予了充分的肯定。這節(jié)課再次讓我知道了,相信學(xué)生的創(chuàng)造力是我們設(shè)計教法的前提。
在引導(dǎo)學(xué)生解決“粉筆的體積”等這個問題時,課堂上有學(xué)生把它當作圓柱體積來求,提出:“誤差這么小,是可行的!倍夷俏粚W(xué)生要求的僅是一個大約的數(shù)值,所以用這種方法可以。但這種計算粉筆體積的方法可行嗎?如果我不提出疑義,也不加以說明,就會給學(xué)生造成“圓臺的體積可以用這兩種方法來計算”的錯誤認識,對學(xué)生的后續(xù)學(xué)習會造成一些不利的影響。我就這個問題引導(dǎo)學(xué)生進一步探索,使學(xué)生發(fā)現(xiàn)平面圖形中的一些規(guī)律照搬到立體圖形中有時會行不通,懂得知識并非一成不變的,有其發(fā)展性,初步理解三維空間物體與二維平面圖形的聯(lián)系與區(qū)別,為進一步學(xué)習積累經(jīng)驗。學(xué)生在探索過程中,雖不能很快獲得結(jié)論性的知識,但卻嘗試了科學(xué)探究的方法,形成良好的思維品質(zhì),增進了情感體驗。這樣,既保護了學(xué)生的創(chuàng)造性,又保證了教學(xué)內(nèi)容的科學(xué)性,就學(xué)生的發(fā)展而言,誰能說讓學(xué)生經(jīng)歷這樣探究的過程,不也比獲得現(xiàn)成的結(jié)論更富有積極的意義?
【小學(xué)數(shù)學(xué)課圓柱的體積課后教學(xué)反思】相關(guān)文章:
小學(xué)數(shù)學(xué)圓柱的體積教學(xué)設(shè)計07-14
圓柱的體積教學(xué)實錄07-01
圓柱的體積教學(xué)設(shè)計06-26
初中數(shù)學(xué)課后教學(xué)反思10-24
數(shù)學(xué)課后反思08-23